Enhancing fruit quality and stress resilience: Genetic advancements in dwarf tomato populations

Resumo

This study investigated the enhancement of fruit-related traits in dwarf tomato populations through advanced hybridisation strategies, employing UFU MC TOM1 as the donor parent. This experiment was conducted at the Federal University of Uberlândia’s experimental station over 3 production cycles from 2019 to 2021. Crossbreeding and backcrossing were performed using UFU-57 as the recurrent parent and UFU MC TOM1 as the donor parent, and dwarf plants were selected in the BC1F2 and BC2F2 generations. This research focused on improving key fruit quality attributes, including size, acidity, and phytonutrient levels, such as β-carotene and lycopene. Notable improvements were observed, particularly in the second backcrossing generation, which produced salad-type fruit with enhanced traits. Promising populations, including UFU × DTOM 8#2-3, UFU × DTOM 22#1-17, and UFU × DTOM 4#4-14, demonstrated significant potential for further lineage development and hybrid breeding programs. Metabolomic analysis identified increased levels of glycine, myo-inositol, acetamide, and dodecanoic acid in the dwarf salad-type tomato line, which were likely associated with improved stress resilience, enhancing its potential for breeding robust cultivars. These results provide a crucial understanding of the genetic mechanisms underlying fruit quality improvement and stress resistance in dwarf tomato. These findings highlight the potential for developing superior cultivars that combine improved nutritional quality with enhanced resilience to biotic and abiotic stressors, thereby contributing to sustainable agricultural practices and food security.

Downloads

Não há dados estatísticos.

Referências

Alvarenga, M. A. R. (2013). Tomate: produção em campo, em casa-de-vegetação e em hidroponia. Editora UFLA.

Anthon, G. E., & Barrett, D. M. (2012). Pectin methylesterase activity and other factors affecting pH and titratable acidity in processing tomatoes. Food Chemistry, 132(2), 915-920. https://doi.org/10.1016/j.foodchem.2011.11.066

Bai, Y., & Lindhout, P. (2007). Domestication and breeding of tomatoes: What have we gained and what can we gain in the future?. Annals of Botany, 100(5), 1085-1094. https://doi.org/10.1093/aob/mcm150

Batista, L. G., Gaynor, R. C., Margarido, G. R. A., Byrne, T., Amer, P., Gorjanc, G., & Hickey, J. M. (2021). Long-term comparison between index selection and optimal independent culling in plant breeding programs with genomic prediction. PLoS One, 16(5), 1-15. https://doi.org/10.1371/journal.pone.0235554

Bolger, A., Scossa, F., Bolger, M., Lanz, C., Maumus, F., Tohge, T., Quesneville, H., Alseekh, S., Sørensen, I., Lichtenstein, G., Fich, E. A., Conte, M., Keller, H., Schneeberger, K., Schwacke, R., Ofner, I., Vrebalov, J., Xu, Y., Osorio, S., ... Fernie, A. R. (2014). The genome of the stress-tolerant wild tomato species Solanum pennellii. Nature Genetics, 46(9), 1034-1038. https://doi.org/10.1038/ng.3046

Cepea. (2023). Revista Hortifruti Brasil: Especial hortaliças. https://www.hfbrasil.org.br/br/revista/apos-dois-anos-de-alta-acentuada-custos-das-hortalicas-se-arrefecem-em-2023.aspx.

Cruz, C. D. (2013). Genes: a software package for analysis in experimental statistics and quantitative genetics. Acta Scientiarum. Agronomy, 35(3), 271-276. https://doi.org/10.4025/actasciagron.v35i3.21251

Finzi, R. R., Maciel, G. M., Silva, E. C., Luz, J. M. Q., & Borba, M. E. A. (2017). Agronomic performance of mini-tomato hybrids from dwarf lines. Ciência e Agrotecnologia, 41(1), 15-21. https://doi.org/10.1590/1413-70542017411021416

Finzi, R. R., Maciel, G. M., Peres, H. G., Silva, M. F., Peixoto, J. V. M., & Gomes, D. A. (2020). Agronomic potential of BC1F2 dwarf round tomato populations. Ciência e Agrotecnologia, 44, 1-8. https://doi.org/10.1590/1413-7054202044028819

Giordano, L. B., & Ribeiro, C. S. C. (2000). Origem, botânica e composição química do fruto. In J. B. C. Silva & L. B. Giordano (Eds.), Tomate para processamento industrial (pp. 12-17). Embrapa Hortaliças.

Instituto Brasileiro de Geografia e Estatística [IBGE]. (2022). Produção agrícola. https://cidades.ibge.gov.br/brasil/pesquisa/14/10380.

Karpe, M., Marcelis, L. F. M., & Heuvelink, E. (2024). Dynamic plant spacing in tomato results in high yields while mitigating the fruit quality-reduction of high planting densities. Frontiers in Plant Science, 15, 1-12. https://doi.org/10.3389/fpls.2024.1386950

Ke, X., Yoshida, H., Hikosaka, S., & Goto, E. (2021). Optimization of photosynthetic photon flux density and light quality for increasing radiation-use efficiency in dwarf tomato under led light at the vegetative growth stage. Plants, 11(1), 1-18. https://doi.org/10.3390/plants11010121

Khan, T., Rashid, R., Shah, L., Afroza, B., Khan, S., Bhat, M. A., Alwutayd, K. M., Mahajan, R., Chung, Y. S., Mansoor, S., & Sun, H. J. (2024). Genetic and phenotypic diversity in Solanum lycopersicum genotypes: insights from morpho-molecular and biochemical analyses. Plant Biotechnology Reports, 18, 207-221. https://doi.org/10.1007/s11816-024-00894-5

Kim, M., Nguyen, T. T. P., Ahn, J.-H., Kim, G.-J., & Sim, S.-C. (2021). Genome-wide association study identifies QTL for eight fruit traits in cultivated tomato (Solanum lycopersicum L.). Horticulture Research, 8(1), 1-10. https://doi.org/10.1038/s41438-021-00638-4

Kumar, J., Ramlal, A., Mallick, D., & Mishra, V. (2021). An overview of some biopesticides and their importance in plant protection for commercial acceptance. Plants, 10(6), 1-15. https://doi.org/10.3390/plants10061185

Liang, X., Yan, J., Guo, S., McClements, D. J., Ma, C., Liu, X., & Liu, F. (2021). Enhancing lycopene stability and bioaccessibility in homogenized tomato pulp using emulsion design principles. Innovative Food Science & Emerging Technologies, 67, 102525. https://doi.org/10.1016/j.ifset.2020.102525

Liu, X., Yang, W., Wang, J., Yang, M., Wei, K., Liu, X., Qiu, Z., van Giang, T., Wang, X., Guo, Y., Li, J., Liu, L., Shu, J., Du, Y., & Huang, Z. (2020). Slgid1a is a putative candidate gene for Qtph1.1, a major-effect Quantitative Trait Locus controlling tomato plant height. Frontiers in Genetics, 11(881), 1-13. https://doi.org/10.3389/fgene.2020.00881

Londoño-Giraldo, L. M., Gonzalez, J., Baena, A. M., Tapasco, O., Corpas, E. J., & Taborda, G. (2020). Selection of promissory crops of wild cherry-type tomatoes using physicochemical parameters and antioxidant contents. Bragantia, 79(2), 169-179. https://doi.org/10.1590/1678-4499.20190276

Maciel, G. M., & Silva, E. C. (2014). Proposta metodológica para quantificação de acilaçúcares em folíolos de tomateiro. Horticultura Brasileira, 32(2), 174-177. https://doi.org/10.1590/S0102-05362014000200009

Massimi, M., Radócz, L., & Csótó, A. (2023). Impact of organic acids and biological treatments in foliar nutrition on tomato and pepper plants. Horticulturae, 9(3), 1-16. https://doi.org/10.3390/horticulturae9030413

Meza, S. L. R., Egea, I., Massaretto, I. L., Morales, B., Purgatto, E., Egea-Fernández, J. M., Bolarin, M. C., & Flores, F. B. (2020). Traditional tomato varieties improve fruit quality without affecting fruit yield under moderate salt stress. Frontiers in Plant Science, 11, 1-15. https://doi.org/10.3389/fpls.2020.587754

Mulamba, N. N., & Mock, J. J. (1978). Improvement of potential of the Eto Blanco maize (Zea mays L.) population by breeding for plant traits. Egyptian Journal of Genetics and Cytology, 7(1), 40-51.

Nkansah, G. O., Amoatey, C., Zogli, M. K., Owusu-Nketia, S., Ofori, P. A., & Opoku-Agyemang, F. (2021). Influence of topping and spacing on growth, yield, and fruit quality of tomato (Solanum lycopersicum L.) under greenhouse condition. Frontiers in Sustainable Food Systems, 5(659047), 1-12. https://doi.org/10.3389/fsufs.2021.659047

Oliveira, C. S., Maciel, G. M., Siquieroli, A. C. S., Gomes, D. A., Martins, M. P. C., & Finzi, R. R. (2022). Selection of F2RC1 saladette-type dwarf tomato plant populations for fruit quality and whitefly resistance. Revista Brasileira de Engenharia Agrícola e Ambiental, 26(1), 28-35. https://doi.org/10.1590/1807-1929/agriambi.v26n1p28-35

Pacco, H. C., Rinaldi, M. M., Sandri, D., Neves, P. H. C., & Valente, R. R. M. (2014). Características de tomate producido con agua tratada en interior y exterior de invernadero. Horticultura Brasileira, 32(4), 417-425. https://doi.org/10.1590/S0102-053620140000400008

Pedrozo, C. A., Benites, F. R. G., Barbosa, M. H. P., Resende, M. D. V., & Silva, F. L. (2009). Eficiência de índices de seleção utilizando a metodologia REML/BLUP no melhoramento de cana-de-açúcar. Scientia Agraria, 10(1), 31-36. https://doi.org/10.5380/rsa.v10i1.11711

Pessoa, H. P., Dariva, F. D., Copati, M. G. F., Paula, R. G., Dias, F. O., & Gomes, C. N. (2023). Uncovering tomato candidate genes associated with drought tolerance using Solanum pennellii introgression lines. PLoS ONE, 18(6), 1-19. https://doi.org/10.1371/journal.pone.0287178

Raigón, M. D., García-Martínez, M. D., & Chiriac, O. P. (2022). Nutritional characterization of a traditional cultivar of tomato grown under organic conditions-cv. "Malacara". Frontiers in Nutrition, 8(810812), 1-13. https://doi.org/10.3389/fnut.2021.810812

Rajendran, S., Bae, J. H., Park, M. W., Oh, J. H., Jeong, H. W., Lee, Y. K., & Park, S. J. (2022). Tomato yield effects of reciprocal hybridization of Solanum lycopersicum cultivars M82 and Micro-Tom. Plant Breeding and Biotechnology, 10(1), 37-48. https://doi.org/10.9787/Pbb.2022.10.1.37

Resende, J. T. V., Cardoso, M. G., Maluf, W. R., Santos, C. D., Gonçalves, L. D., Resende, L. V., & Naves, F. O. (2002). Método colorimétrico para quantificação de acilaçúcar em genótipos de tomateiro. Ciência e Agrotecnologia, 26(6), 1204-1208.

Schipper, R., van der Meer, M., Visser, P. H. B., Heuvelink, E., & Marcelis, L. F. M. (2023). Consequences of intra-canopy and top LED lighting for uniformity of light distribution in a tomato crop. Frontiers in Plant Science, 14(1012529), 1-12. https://doi.org/10.3389/fpls.2023.1012529

Schrager-Lavelle, A., Gath, N. N., Devisetty, U. K., Carrera, E., López-Díaz, I., Blázquez, M. A. & Maloof, J. N. (2019). The role of a class III gibberellin 2-oxidase in tomato internode elongation. The Plant Journal, 97(3), 603-615. https://doi.org/10.1111/tpj.14145

Seabra Junior, S., Casagrande, J. G., Toledo, C. A. L., Ponce, F. S., Ferreira, F. S., Zanuzo, M. R., Diamante, M. S., & Lima, G. P. P. (2022). Selection of thermotolerant Italian tomato cultivars with high fruit yield and nutritional quality for the consumer taste grown under protected cultivation. Scientia Horticulturae, 291, 110559. https://doi.org/10.1016/j.scienta.2021.110559

Singh, D., Biswal, A. K., Samanta, D., Singh, V., Kadry, S., Khan, A., & Nam, Y. (2023). Smart high-yield tomato cultivation: Precision irrigation system using the Internet of Things. Frontiers in Plant Science, 14(1239594), 1-17. https://doi.org/10.3389/fpls.2023.1239594

Vargas, P. F., Duarte, L. S., Silva, E. H. C., Zecchini, A. C., Soares, R. S., & Godoy, L. J. G. (2017). Performance of mini-tomato hybrids in different training systems with different number of stems. Horticultura Brasileira, 35(3), 428-433. https://doi.org/10.1590/S0102-053620170319

Vazquez, D. V., Pereira da Costa, J. H., Godoy, F. N. I., Cambiaso, V., & Rodríguez, G. R. (2022). Genetic basis of the lobedness degree in tomato fruit morphology. Plant Science, 319, 111258. https://doi.org/10.1016/j.plantsci.2022.111258

Vendemiatti, E., Lira, I. O. H., Snijders, R., Torne Srivastava, T., Therezan, R., Prants, G. S., Lopez-Ortiz, C., Reddy, U. K., Bleeker, P., Schenck, C. A., Peres, L. E. P., & Benedito, V. A. (2024). Woolly mutation with the Get02 locus overcomes the polygenic nature of trichome-based pest resistance in tomato. Plant Physiology, 195(2), 911-923. https://doi.org/10.1093/plphys/kiae128

Wang, Q., Xiong, H., Guo, H., Zhao, L., Xie, Y., Gu, J., Zhao, S., Ding, Y., & Liu, L. (2023). Genetic analysis and mapping of dwarf gene without yield penalty in a γ-ray induced wheat mutant. Frontiers in Plant Science, 14(1133024), 1-9. https://doi.org/10.3389/fpls.2023.1133024

Wang, T., Zhang, H., & Zhu, H. (2019). CRISPR technology is revolutionizing the improvement of tomato and other fruit crops. Horticulture Research, 6(77), 1-13. https://doi.org/10.1038/s41438-019-0159-x

Würschum, T., Langer, S. M., Longin, C. F. H., Tucker, M. R., & Leiser, W. L. (2017). A modern Green Revolution gene for reduced height in wheat. The Plant Journal, 92(5), 892-903. https://doi.org/10.1111/tpj.13726

Zemach, I., Alseekh, S., Tadmor-Levi, R., Fisher, J., Torgeman, S., Trigerman, S., Nauen, J., Hayut, S. F., Mann, V., Rochsar, E., Finkers, R., Wendenburg, R., Osorio, S., Bergmann, S., Lunn, J. E., Semel, Y., Hirschberg, J., Fernie, A. R., & Zamir, D. (2023). Multi-year field trials provide a massive repository of trait data on a highly diverse population of tomato and uncover novel determinants of tomato productivity. The Plant Journal, 116(4), 1136-1151. https://doi.org/10.1111/tpj.16268

Publicado
2025-09-03
Como Citar
Mattos, T. P., Maciel, G. M., Ribeiro, A. L. A., Oliveira, C. S. de, Siquieroli, A. C. S., Silva, N. C. Q., Pinto, F. G., & Ikehara, B. R. M. (2025). Enhancing fruit quality and stress resilience: Genetic advancements in dwarf tomato populations. Acta Scientiarum. Agronomy, 47(1), e72614. https://doi.org/10.4025/actasciagron.v47i1.72614
Seção
Melhoramento Vegetal

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus