MultivariateAnalysis: um pacote R para análise multivariada.

Resumo

Statistical analysis is essential in research. As modern production processes evolve, the increasing volume of data needing processing has demanded techniques like multivariate analysis for simultaneous data handling. Multivariate analyses are typically complex and often require statistical software. The MultivariateAnalysis package, an R package available on the CRAN platform, was developed to facilitate these analyses. Introduced in 2021 by researcher Alcinei Místico Azevedo, it encompasses techniques such as principal component analysis, principal coordinate analysis, hierarchical clustering, Mantel correlation, dendrograms, canonical variables, dissimilarity measurements, and multivariate variance analysis. This paper aims to detail the MultivariateAnalysis package, offering a practical guide from initial steps to results, enhancing user understanding of the package's functions and potential applications. Its open-source code permits function additions. As of 2024, MultivariateAnalysis has reached version 5.0, featuring enhancements in graphical functions that provide a simple, flexible, and intuitive workspace applicable across various knowledge domains

Downloads

Não há dados estatísticos.

Referências

Allaire, J. J. (2012). RStudio: integrated development environment for R. 770(394), 165-171. https://posit.co/download/rstudio-desktop/.

Anderson, E. (1935). Iris Data- R. https://stat.ethz.ch/R-manual/R-devel/library/datasets/html/iris.html

Andrade, E. K. V., Andrade Júnior, V. C., Laia, M. L., Fernandes, J. S. C., Oliveira, A. J. M., & Azevedo, A. M. (2017). Genetic dissimilarity among sweet potato genotypes using morphological and molecular descriptors. Acta Scientiarum. Agronomy, 39(4), 447-455. https://doi.org/10.4025/actasciagron.v39i4.32847

Benito, B. M., & Birks, H. J. B. (2020). Distantia: An open-source toolset to quantify dissimilarity between multivariate ecological time series. Echography, 43(5), 660-667. https://doi.org/10.1111/ecog.04895

Butts, C. T. (2022). Maintainer Carter T. Package 'yacca'.

Cruz, C. D. (2016). Genes Software – extended and integrated with the R, Matlab and Selegen. Acta Scientiarum. Agronomy, 38(4), 547- 552. https://doi.org/10.4025/actasciagron.v38i4.32629

Silva, A. R. (2016). Package ' biotools '. https://CRAN. R-project. org/package=~ biotools

Vries, A., & Ripley, B. D. (2024). ggdendro: Create dendrograms and tree diagrams using 'ggplot2'. R package version 0.2.0. https://andrie.github.io/ggdendro/

Dray, S., & Dufour, A.-B. (2007). The ade4 package: implementing the duality diagram for ecologists. Journal of Statistical Software, 22(4), 1-20. https://doi.org/10.18637/jss.v022.i04

Fávero, L. P. L., Belfiore, P. P., Silva, F. L., & Chan, B. L. (2009). Análise de dados: modelagem multivariada para tomada de decisões. Elsevier.

Fox, J., Weisberg, S., Adler, D., Bates, D., Baud-Bovy, G., Ellison, S., Firth, D., Friendly, M., Gorjanc, G., & Graves, S. (2012). Package ‘car’, 16. R Foundation for Statistical Computing. https://cran.r-project.org/package=car/car.pdf

Friendly, M., & Fox, J. (2013). candisc: Visualizing generalized canonical discriminant and canonical correlation analysis. R package version 0.6-5. http://CRAN.R-project.org/package=candisc

Galili, T. (2015). endextend: an R package for visualizing, adjusting and comparing trees of hierarchical clustering. Bioinformatics, 31(22), 3718-3720. https://doi.org/10.1093/bioinformatics/btv428

González, I., Dejean, S., Martin, P. G. P., & Baccini, A. (2008). CCA: An R Package to extend canonical correlation analysis. Journal of Statistical Software, 23(12), 1-14. https://doi.org/10.18637/jss.v023.i12.

Gouvea, M. A., Prearo, L. C., & Romeiro, M. C. (2011). Avaliação do emprego da técnica de análise multivariada de variância em teses e dissertações dos programas de pós graduação em administração da Universidade de São Paulo e da Universidade Federal do Grande ABC. Revista Estudos do CEPE, 34, 69-97

Hair Jr., J. F., Black, W. C., Babin, B. J., Anderson, R. E., Tatham, R. L., Gouvêa, M. A., & Sant’Anna, A. S. (2009). Análise multivariada de dados. Bookman.

Hurley, C. B., & Earle, D. (2022). DendSer: Dendrogram seriation: Ordering for visualisation. https://doi.org/10.32614/CRAN.package.DendSer.

Lê, S., Josse, J., & Husson, F. (2008). FactoMineR: An R Package for Multivariate Analysis. Journal of Statistical Software, 25(1), 1-18. https://doi.org/10.18637/jss.v025.i01

Jongman, R. H. G., Ter Braak, C. J. F., & van Tongeren, O. F. R. (1995). Data analysis in community and landscape ecology. Cambridge University Press. https://doi.org/10.1017/CBO9780511525575

Kassambara, A., & Mundt, F. (2020). Package ' factoextra '. Extract and visualize the results of multivariate data analyses. R Package Version 1.0.7 https://CRAN.R-project.org/package=factoextra

Lucas, A. (2014). amap: Another multidimensional analysis package. http://CRAN. R- project. org/package= amap

Montero, P., & Vilar, J. A. (2014). TSclust: An R package for time series clustering. Journal of Statistical Software, 62(1), 1-43. https://doi.org/10.18637/jss.v062.i01

Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P. R., O’Hara, R. B., Simpson, G. L., Solymos, P., Stevens, M. H. H., Szoecs, E., & Wagner, H. (2018). vegan: Community ecology package. R package version 2.5-2. https://CRAN.R-project.org/package=vegan

Olivoto, T., & Dal'Col Lúcio, A. (2020). metan: An R package for multi-environment trial analysis. Methods in Ecology and Evolution, 11(6), 783-789. https://doi.org/10.1111/2041-210X.13384

Pathberiya, H. A. (2016). Calculate dissimilarity matrix for dataset with mixed atributes. https://cran.r-project.org/web/packages/DisimForMixed/DisimForMixed.pdf

R Core Team. (2019). A: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.r-proje ct.org/

Silva, J. M. P., & Cavichioli, F. A. (2020). O uso da agricultura 4.0 como perspectiva do aumento da produtividade no campo. Interface Tecnológica, 17(2), 616-629. https://doi.org/10.31510/ infa.v 17i2.1068

Publicado
2025-09-03
Como Citar
Monteiro, A. L. M., & Azevedo, A. M. (2025). MultivariateAnalysis: um pacote R para análise multivariada. Acta Scientiarum. Agronomy, 47(1), e74349. https://doi.org/10.4025/actasciagron.v47i1.74349
Seção
Biometria, Modelagem e Estatística

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus