Digestible methionine levels for white-egg layer pullets from 7 to 12 weeks of age

  • Jalceyr Pessoa Figueiredo Júnior Universidade Federal da Paraíba
  • Fernando Guilherme Perazzo Costa Universidade Federal da Paraíba
  • Ricardo Romão Guerra Universidade Federal da Paraíba
  • Marcelo Helder Medeiros Santana Universidade Federal da Paraíba
  • Matheus Ramalho de Lima Universidade Federal da Paraíba
  • Sarah Gomes Pinheiro Universidade Federal da Paraíba
Palavras-chave: enzymatic profile; essential amino acid; histology; morphometry.

Resumo

An experiment was carried out to evaluate the requirement of digestible methionine for growing pullets at growth phase (7 to 12 weeks of age). A completely randomized design was distributed in five treatments, six replicates, and 15 pullets per experimental unit. 450 Dekalb White pullets from the 7th weeks of age, with an average initial weight of 313.14 ± 12.49 g were used. Dietary treatments consisted in five diets supplemented with DL-Methionine which resulted in five levels of digestible methionine (0.266, 0.294, 0.322, 0.350, and 0.378 %). Performance, serological blood, histopathology and histomorphometry data were evaluated. Quadratic responses were observed for final live weight (p < 0.0143), weight gain (p < 0.0073), feed conversion ratio (p < 0.0058), glycogen deposition in the liver (p < 0.0001), gamma-glutamyl transferase enzyme activity (p < 0.0008), and villus height (p < 0.0024) with digestible dMet levels. In conclusion, the use of 0.343 % dMet, corresponding to a dMet:dLys ratio 55, is recommended for white-egg pullets from 7 to 12 weeks of age.

Downloads

Não há dados estatísticos.

Referências

Aggrey, S. E., González-Cerón, F., Rekaya, R., & Mercier, Y. (2018). Gene expression differences in the methionine demethylation and transulphuration pathways under methionine restriction and recovery with D,L-methionine or D,L-HMTBA in meat-type chickens. Journal of Animal Physiology and Animal Nutrition, 102(1), 468-475. doi: 10.1111/jpn.12779

Akaike, H. (1987). Factor analysis and AIC. Psychometrika, 52(3), 317-332. doi: 10.0007/978-1-4612-1694-0_29

Association of Official Analytical Chemists [AOAC]. (1990). Official methods of analysis. Washington, DC: AOAC International.

Bertalanffy, L. V. (1957). Quantitative laws in metabolism and growth. The Quarterly Review of Biology, 32(3), 217-231. Doi: 10.1086/401873

Bornelöv, S., Seroussi, E., Yosefi, S., Benjamini, S., Miyara, S., Ruzal, M., & Friedman-Einat, M. (2018). Comparative omics and feeding manipulations in chicken indicate a shift of the endocrine role of visceral fat towards reproduction. BMC Genomics, 19(1), 295. doi: 10.1186/s12864-018-4675-0

Braz, N. M., Freitas, E. R., Bezerra, R. M., Cruz, C. E. B., Farias, N. A. P., Silva, N. M., ... Xavier, R. P. S. (2011). Fibra na ração de crescimento e seus efeitos no desempenho de poedeiras nas fases de crescimento e postura. Revista Brasileira de Zootecnia, 40(12), 2744-2753. doi: 10.1590/S1516-35982011001200019

Brody, S. (1945). Bioenergetics and growth. New York, NY: Reinhold Publishing.

D’Agostini, P., Gomes, P. C., Calderano, A. A., Melo, H. H. C., Sá, L. M., Rostagno, H. S., & Albino, L. F. T. (2012). Requirement of methionine+cysteine for pullets in the growing phase from 7 to 12 weeks old. Brazilian Journal Veterinarian Animal Science, 64(6), 1699-1706. doi: 10.1590/S0102-09352012000600040

Del Vesco, A. P., Gasparino, E., Oliveira Neto, A. R., Guimarães, S. E. F., Marcato, S. M. M., & Voltoline, D. M. (2013). Dietary methionine effects on IGF-I and GHR mRNA expression in broilers. Genetics Molecular Research, 12(4), 6414-6423. doi: 10.4238/2013.December.10.2

Granja Planalto (2009). Manual de manejo das poedeiras Dekalb White. Uberlândia, MG: Granja Planalto.

Emadi, M., Kaveh, K., Bejo, M. H., Ideris, A., Jahanshiri, F., Ivan, M., & Alimon, R. (2010). Growth performance and blood parameters as influenced by different levels of dietary arginine in broiler chickens. Journal of Animal and Veterinary Advances, 9(1), 70-74.

Flora, R. P. D., Dionello, N. J. L., Benitez, L., Germano, J. M., Gotuzzo, A. G., & Freitas, S. (2017). Expressão gênica de IGF-1 e GHR no fígado e no músculo do peito de codornas de corte suplementadas com diferentes níveis de metionina em duas gerações sucessivas. Arquivos Brasileiro de Medicina Veterinária e Zootecnia, 69(1), 205-213. doi: 10.1590/1678-4162-9143

Gompertz, G. (1825). On the nature of the function expressive of the law of human mortality, and on the new mode of determining the value of life contingencies. Philosophical Transactions of the Royal Society, 115, 513-585. doi: 10.1098/rstl.1825.0026

Handique, B., Saikia, G., Dowarah, R., Saikia, B. N., & Tamuly, S. (2019). Effect of supplementation of synthetic lysine and methionine on serum biochemical profile, carcass characteristics and meat composition in broiler chicken. Indian Journal of Animal Nutrition, 36(1), 40-46. doi: 10.5958/2231-6744.2019.00007.0

Hy-Line International. (2016). Management Guide. Hy-Line international. Des Moines, IA: Hy-Line International.

Ishak, K., Baptista, A., Bianchi, L., Callea, F., Groote, J. D., Gudat, F., ...Thaler, H. (1995). Histological grading and staging of chronic hepatitis. Journal Hepatology, 22(6), 696-699. doi: 10.1016/0168-8278(95)80226-6

Islam, M. S., & Dutta, R. K. (2014). Impacts of vitamin A and essential amino acids on growth performance, survivability, carcass characteristics and profitability of a crossbred chicken (Gallus domesticus L.) in Rajshahi, Bangladesh. International Journal Science Research Environment Science, 2(5), 174-183. doi: 10.12983/ijsres-2014-p0174-0183

Jankowski, J., Kubinska, M., & Zdunczyk, Z. (2014). Nutritional and immunomodulatory function of methionine in poultry diets – a review. Annals of Animal Science, 14(1), 17-31. doi: 10.2478/aoas-2013-0081

Kaneko, J. J., Harvey, J. W., & Bruss, M. L. (2008). Clinical biochemistry of domestic animals. New York, NY: Academic Press.

Kidd, M. T. (2004). Nutritional modulation of immune function in broilers. Poultry Science, 83(4), 650-657. doi: 10.1093/ps/83.4.650

Montonen, J., Boeing, H., Fritsche, A., Schleicher, E., Joost, H. G., Schulze, B., ... Pischon, T. (2012). Consumption of red meat and whole-grain bread in relation to biomarkers of obesity, inflammation, glucose metabolism and oxidative stress. European Journal of Nutrition, 52(1), 337-345. doi: 10.1007/s00394-012-0340-6

Norouzian, H., Alirezaei, M., Dezfoulian, O., & Taati, M. (2018). The effects of post-hatch feeding with betaine on the intestinal development of broiler chickens. Poultry Science, 20(3), 403-412. doi: 10.1590/1806-9061-2017-0468

Richards, F. J. A. (1959). A flexible growth function for empirical use. Journal of Experimental Botany, 10(2), 290-301. doi: 10.1093/jxb/10.2.290

Rostagno, H. S., Albino, L. F. T., Donzele, J. L., Gomes, P. C., Oliveira, R. F., Lopes, D. C., ...Euclides, R. F. (2011). Tabelas brasileiras para aves e suínos: composição de alimentos e exigências nutricionais. Viçosa, MG: Universidade Federal de Viçosa.

Rostagno, H. S., Albino, L. F. T., Hannas, M. I., Donzele, J. L., Sakomura, N. K., Perazzo, F. G., ...Brito, C.O. (2017). Tabelas brasileiras para aves e suínos: composição de alimentos e exigências nutricionais. Viçosa, MG: Universidade Federal de Viçosa.

Ruan, D., Fouad, A. M., Fan, Q., Xia, W., Wang, S., Chen, W., ... Zheng, C. (2018). Effects of dietary methionine on productivity, reproductive performance, antioxidant capacity, ovalbumin and antioxidant-related gene expression in laying duck breeders. British Journal of Nutrition, 199(2), 121-130. doi: 10.1017/S0007114517003397

Samuel, V. T., Liu, Z. X., Qu, X., Elder, B. D., Bilz, S., Befroy, D., ... Shulman, G. I. (2004). Mechanism of hepatic insulin resistance in non-alcoholic fatty liver disease. Journal of Biological Chemistry, 279(31), 32345-32353. doi: 10.1074/jbc.M313478200

Statistical Analysis System [SAS]. (2011). SAS/STAT User’s guide, Version 9.4. Cary, NC: SAS Institute Inc.

Shen, Y. B., Ferket, P., Park, I., Malheiros, R. D., & Kim, S. W. (2015). Effects of feed grade L- methionine on intestinal redox status, intestinal development, and growth performance of young chickens compared with conventional DL-methionine. Journal of Animal Science, 93(6), 2977-2986. doi: 10.2527/jas.2015-8898

Silva, D. J., & Queiroz, A. C. (2002). Análise de alimentos: métodos químicos e biológicos. Viçosa, MG: UFV.

Verhulst, P. F. (1845). Recherches mathématiques sur la loi d’accroissement de la population. Nouveaux Mémoires de L’Académie Royale des Sciences et Belles-Lettres de Bruxelles, 18, 1-41.

Wu, B., Chui, H., Peng, X., Fang, J., Cui, W., & Liu, X. (2012). Pathology of spleen in chickens fed on a diet deficient in methionine. Health, 4(1), 32-38. doi: 10.4236/health.2012.41007

Zeitz, J. O., Mohrmann, S., Käding, S. C., Devlikamov, M., Niewalda, I., Whelan, R., ... Eder, K. (2019). Effects of methionine on muscle protein synthesis and degradation pathways in broilers. Journal of Animal Physiology and Animal Nutrition, 103(1), 191-203. doi: 10.1111/jpn.13026

Publicado
2020-04-01
Como Citar
Figueiredo Júnior, J. P., Costa, F. G. P., Guerra, R. R., Santana, M. H. M., Lima, M. R. de, & Pinheiro, S. G. (2020). Digestible methionine levels for white-egg layer pullets from 7 to 12 weeks of age. Acta Scientiarum. Animal Sciences, 42(1), e47222. https://doi.org/10.4025/actascianimsci.v42i1.47222
Seção
Forragicultura

0.9
2019CiteScore
 
 
29th percentile
Powered by  Scopus