Potential and restrictions of Poincianella pyramidalis (Tul.) L. P. Queiroz as native forage in the Brazilian semi-arid region
Resumo
Poincianella pyramidalis (catingueira) is a endemic plant of the Caatinga, selected by animals grazing on native pasture. With the aim of evaluating characteristics indicative of its nutritional quality, 10 plants were selected and identified, sampled at five different ages, were used to determine dry matter (DM), crude protein (CP), neutral detergent fibre (NDF), mineral matter (MM), DM degradability (Deg DM), NDF degradability (Deg NDF) and in situ and in vitro leaf-tissue degradability. Phytochemical prospection was performed, and 1H and 13C nuclear magnetic resonance applied to detect the presence of secondary compounds. The data were submitted to analysis of variance and Tukey’s test at 5%, and correlation analysis was carried out on the variables for leaf maturity in days. The levels of CP, NDF and Deg NDF showed a negative correlation with the increases in leaf age. Leaf-tissue degradation was restricted due to a physical barrier developed in the leaf fragments, which can be attributed to plant defence mechanisms. The in situ degradability of the cell wall components decreased with the increase in leaf age. The high levels of tannins and lignin, and the strong presence of flavonoids, should be considered for their anti-nutritional and pharmacological potential.
Downloads
Referências
Akin, D. E. (1989). Histological and physical factors affecting digestibility of forages. Agronomy Journal, 81(1), 17-25. doi: 10.2134/agronj1989.00021962008100010004x
Arzani, H., Zohdi, M., Fish, E., Amiri, G. H. Z., Nikkhah, A., & Wester, D. (2004). Phenological effects on forage quality of five grass species. Rangeland Ecology and Management, 57(6), 624-630. doi: 10.2458/azu_jrm_v57i6_arzani
Avice, J.-C., & Etienne, P. (2014). Leaf senescence and nitrogen remobilization efficiency in oilseed rape (Brassica napus L.). Journal of Experimental Botany, 65(14), 3813-3824. doi: 10.1093/jxb/eru177
Bahia, M. V., David, J. P., & David, J. M. (2010). Occurrence of biflavones in leaves of Caesalpinia pyramidalis specimens. Química Nova, 33(6), 1297-1300. doi: 10.1590/S0100-40422010000600015
Bahia, M. V., Santos, J. B., David, J. P., & David, J. M. (2005). Biflavonoids and other phenolics from Caesalpinia pyramidalis (Fabaceae). Journal of the Brazilian Chemical Society, 16(6B), 1402-1405. doi: 10.1590/S0103-50532005000800017
Barbehenn, R. V., & Constabel, C. P. (2011). Tannins in plant–herbivore interactions. Phytochemistry, 72(13), 1551-1565. doi: /10.1016/j.phytochem.2011.01.040
Barry, K. J., & Crowell-Davis, S. L. (1999). Gender differences in the social behavior of the neutered indoor-only domestic cat. Applied Animal Behaviour Science, 64(3), 193-211. doi: 10.1016/S0168-1591(99)00030-1
Belviso, S., Giordano, M., Dolci, P., & Zeppa, G. (2011). Degradation and biosynthesis of terpenoids by lactic acid bacteria isolated from cheese: first evidence. Dairy Science & Technology, 91(2), 227-236. doi: 10.1007/s13594-011-0003-z
Buxton, D. R., Mertens, D. R., & Fisher, D. S. (1996). Forage quality and ruminant utilization. Cool-Season Forage Grasses, 1, 229-266. doi: 10.1016/0377-8401(95)00885-3
Casali, A. O., Detmann, E., Valadares Filho, S., Pereira, J. C., Cunha, M., Detmann, K. d. S. C., & Paulino, M. F. (2009). Estimação de teores de componentes fibrosos em alimentos para ruminantes em sacos de diferentes tecidos. Revista Brasileira de Zootecnia, 38(1), 130-138. doi: 10.1590/S1516-35982009000100017
Chaves, T. P., Medeiros, F. D., Sousa, J. M. C., Silva, L. A. P., Lima, M. A., Coutinho, H. D. M., & Medeiros, A. C. D. (2019). Phytochemical characterization and mutagenicity, cytotoxicity, antimicrobial and modulatory activities of Poincianella pyramidalis (Tul.) LP Queiroz. Natural Product Research, 1-6. doi: 10.1080/14786419.2019.1566724
Cheng, A. X., Lou, Y.-G., Mao, Y.-B., Lu, S., Wang, L.-J., & Chen, X. Y. (2007). Plant terpenoids: Biosynthesis and ecological functions. Journal of Integrative Plant Biology, 49(2), 179-186. doi: 10.1111/j.1744-7909.2007.00395.x
Currie, H. A., & Perry, C. C. (2007). Silica in plants: biological, biochemical and chemical studies. Annals of Botany, 100(7), 1383-1389. doi: 10.1093/aob/mcm247
Dubois, M., Van den Broeck, L., & Inzé, D. (2018). The pivotal role of ethylene in plant growth. Trends in Plant Science, 23(4), 311-323. doi: 10.1016/j.tplants.2018.01.003
Etienne, P., Diquelou, S., Prudent, M., Salon, C., Maillard, A., & Ourry, A. (2018). Macro and micronutrient storage in plants and their remobilization when facing scarcity: The case of drought. Agriculture, 8(1), 14. doi: 10.3390/agriculture8010014
Fahad, S., Bajwa, A. A., Nazir, U., Anjum, S. A., Farooq, A., Zohaib, A., ... Saud, S. (2017). Crop production under drought and heat stress: plant responses and management options. Frontiers in Plant Science, 8(1147), 1-16. doi: 10.3389/fpls.2017.01147
França, A. A., Guim, A., Batista, A. M. V., Pimentel, R. M. M., Ferreira, G. D. G., & Martins, I. D. S. L. (2010). Anatomia e cinética de degradação do feno de Manihot glaziovii. Acta Scientiarum. Animal Sciences, 32(2), 131-138. doi: 10.4025/actascianimsci.v32i2.8800
Godde, C., Dizyee, K., Ash, A., Thornton, P., Sloat, L., Roura, E., ... Herrero, M. (2019). Climate change and variability impacts on grazing herds: Insights from a system dynamics approach for semi‐arid Australian rangelands. Global Change Biology, in press. doi: 10.1111/gcb.14669.
Goes, B. T. R. H., Tramontini, R. C. M., Cardim, S. T., Almeida, G. D., Ribeiro, J., Morotti, F., ... Brabes, K. C. S. (2012). Ruminal degradability of dry matter and crude protein of roughages for cattle. Revista Acadêmica Ciências Agrárias e Ambientais, 10(3), 285-291. doi: 10.7213/academica.7709
Gomes-Copeland, K. K. P., Lédo, A. S., Almeida, F. T. C., Moreira, B. O., Santos, D. C., Santos, R. A. F., ... David, J. P. (2018). Effect of elicitors in Poincianella pyramidalis callus culture in the biflavonoid biosynthesis. Industrial Crops and Products, 126, 421-425. doi: 10.1016/j.indcrop.2018.10.038
Gonzaga Neto, S., Batista, Â. M. V., Carvalho, F. F. R., Martínez, R. L. V., Barbosa, J. E. A. S., & Silva, E. O. (2001). Composição bromatológica, consumo e digestibilidade in vivo de dietas com diferentes níveis de feno de catingueira (Caesalpinea bracteosa), fornecidas para ovinos Morada Nova. Revista Brasileira de Zootecnia, 30(2), 553-562. doi: 10.1590/S1516-35982001000200035
Grabber, J. H. (2005). How do lignin composition, structure, and cross-linking affect degradability? A review of cell wall model studies. Crop Science, 45(3), 820-831. doi: 10.2135/cropsci2004.0191
Habermann, E., Oliveira, E. A. D., Contin, D. R., Delvecchio, G., Viciedo, D. O., Moraes, M. A., ... Martinez, C. A. (2019). Warming and water deficit impact leaf photosynthesis and decrease forage quality and digestibility of a C4 tropical grass. Physiologia Plantarum, 165(2), 383-402. doi: 10.1111/ppl.12891
Hui, D., Yu, C.-L., Deng, Q., Dzantor, E. K., Zhou, S., Dennis, S., . . . Shen, W. (2018). Effects of precipitation changes on switchgrass photosynthesis, growth, and biomass: A mesocosm experiment. PloS One, 13(2), e0192555. doi: 10.1371/journal.pone.0192555
Jawla, S., Kumar, Y., & Khan, M. S. Y. (2013). Isolation of antidiabetic principle from Bougainvillea spectabilis Willd (Nyctaginaceae) stem bark. Tropical Journal of Pharmaceutical Research, 12(5), 761-765. doi: 10.4314/tjpr.v12i5.15
Jung, H. G., & Vogel, K. P. (1986). Influence of lignin on digestibility of forage cell wall material. Journal of Animal Science, 62(6), 1703-1712. doi: 10.2527/jas1986.6261703x
Karnieli, A. (2003). Natural vegetation phenology assessment by ground spectral measurements in two semi-arid environments. International Journal of Biometeorology, 47(4), 179-187. doi: 10.1007/s00484-003-0169-z.
Köppen, W., & Geiger, R. (1928). Klimate der Erde. Gotha: Verlag Justus Perthes. Wall-map 150cmx200cm.
Lee, M. R. F. (2014). Forage polyphenol oxidase and ruminant livestock nutrition. Frontiers in Plant Science, 5, 1-9. doi: 10.3389/fpls.2014.00694
Lima, C. R., Bruno, R. L. A., Andrade, A. P., Pacheco, M. V., Quirino, Z. G. M., Silva, K. d. R. G., & Belarmino, K. d. S. (2018). Phenology of Poincianella pyramidalis (Tul.) L. P. Queiroz and its relationship with the temporal distribution of rainfall in the brazilian semi-arid region. Ciência Florestal, 28(3), 1035-1048. doi: 10.5902/1980509833387
Lima, L. M. S., Alquini, Y., Brito, C. J. F. A., & Deschamps, F. C. (2001). Degradação ruminal dos tecidos vegetais e composição bromatológica de cultivares de Axonopus scoparius (Flüegge) Kuhlm. e Axonopus fissifolius (Raddi) Kuhlm. Ciência Rural, 31, 509-515. doi: 10.1590/S0103-84782001000300025
Marles, M. A. S., Coulman, B. E., & Bett, K. E. (2008). Interference of condensed tannin in lignin analyses of dry bean and forage crops. Journal of Agricultural and Food Chemistry, 56(21), 9797-9802. doi: 10.1021/jf800888r
Mendonça Júnior, A. F., Braga, A. P., & Galvão, R. J. D. (2008). Composição bromatológica, consumo e digestibilidade in vivo de dietas com diferentes níveis de feno de catingueira (Caesalpinea pyramidalis Tul), fornecidas para ovinos SRD. Revista de Biologia e Ciências da Terra, 8(1), 190-197. doi: 10.1590/S1516-35982001000200035
Muir, J. P. (2011). The multi-faceted role of condensed tannins in the goat ecosystem. Small Ruminant Research, 98(1–3), 115-120. doi: 10.1016/j.smallrumres.2011.03.028
Oliveira, J. C. S., David, J. P., & David, J. M. (2016a). Biflavonoids from the bark roots of Poincianella pyramidalis (Fabaceae). Phytochemistry Letters, 16, 18-22. doi: 10.1016/j.phytol.2016.02.017
Oliveira, O. F., Santos, M. V. F., Cunha, M. V., Dubeux Júnior, J. C. B., Muir, J. P., Mello, A. C. L., ... Barros, G. F. N. P. (2016b). Botanical composition of Caatinga rangeland and diets selected by grazing sheep. Tropical Grasslands, 4(2), 71-81. doi: 10.1016/j.phytol.2016.02.017.
Piotrowska, A., & Bajguz, A. (2011). Conjugates of abscisic acid, brassinosteroids, ethylene, gibberellins, and jasmonates. Phytochemistry, 72(17), 2097-2112. doi: 10.1016/j.phytochem.2011.08.012.
Pires, A. J. V., Reis, R. A., Carvalho, G. G. P., Siqueira, G. R., Bernardes, T. F., Ruggieri, A. C., ... Roth, M. T. P. (2006). Degradabilidade ruminal da matéria seca, da fração fibrosa e da proteína bruta de forrageiras. Pesquisa Agropecuária Brasileira, 41(4), 643-648. doi: 10.1590/S0100-204X2006000400014
Raffrenato, E., Fievisohn, R., Cotanch, K. W., Grant, R. J., Chase, L. E., & Van Amburgh, M. E. (2017). Effect of lignin linkages with other plant cell wall components on in vitro and in vivo neutral detergent fiber digestibility and rate of digestion of grass forages. Journal of Dairy Science, 100(10), 8119-8131. doi: 10.3168/jds.2016-12364
Rahman, M. M., & Kawamura, O. (2011). Oxalate accumulation in forage plants: some agronomic, climatic and genetic aspects. Asian-Australasian Journal of Animal Sciences, 24(3), 439-448. doi: 10.5713/ajas.2011.10208
Reed, J. D. (1995). Nutritional toxicology of tannins and related polyphenols in forage legumes. Journal of Animal Science, 73(5), 1516-1528. doi: 10.2527/1995.7351516x
Santos, G. R. A., Batista, A. M. V., Guim, A., Santos, M. V. F., Silva, M. J. A., & Pereira, V. L. A. (2008). Determinação da composição botânica da dieta de ovinos em pastejo na Caatinga. Revista Brasileira de Zootecnia, 37(10), 1876-1883. doi: 10.1590/S1516-35982008001000023
Statistical Analysis Software [SAS]. (2004). SAS/STAT User guide, Version 9.1.2. Cary, NC: SAS Institute Inc.
Silva, J. L., Guim, A., Ferreira, M. A., & Soares, L. F. P. (2016). Forragens taniníferas na produção de caprinos e ovinos. Archivos de zootecnia, 65(252), 605-614. doi: 10.21071/az.v65i252.1933
Webb, M. A. (1999). Cell-mediated crystallization of calcium oxalate in plants. The Plant Cell, 11(4), 751-761. doi: 10.1105/tpc.11.4.751
Wilson, J. R., & Mertens, D. R. (1995). Cell wall accessibility and cell structure limitations to microbial digestion of forage. Crop Science, 35(1), 251-259. doi: 10.2135/cropsci1995.0011183X003500010046x
DECLARAÇÃO DE ORIGINALIDADE E DIREITOS AUTORAIS
Declaro que o presente artigo é original, não tendo sido submetido à publicação em qualquer outro periódico nacional ou internacional, quer seja em parte ou em sua totalidade.
Os direitos autorais pertencem exclusivamente aos autores. Os direitos de licenciamento utilizados pelo periódico é a licença Creative Commons Attribution 4.0 (CC BY 4.0): são permitidos o compartilhamento (cópia e distribuição do material em qualqer meio ou formato) e adaptação (remix, transformação e criação de material a partir do conteúdo assim licenciado para quaisquer fins, inclusive comerciais.
Recomenda-se a leitura desse link para maiores informações sobre o tema: fornecimento de créditos e referências de forma correta, entre outros detalhes cruciais para uso adequado do material licenciado.