Potential and restrictions of Poincianella pyramidalis (Tul.) L. P. Queiroz as native forage in the Brazilian semi-arid region

Palavras-chave: degradability, native forage, nutrients, plant defence, tannins.

Resumo

Poincianella pyramidalis (catingueira) is a endemic plant of the Caatinga, selected by animals grazing on native pasture. With the aim of evaluating characteristics indicative of its nutritional quality, 10 plants were selected and identified, sampled at five different ages, were used to determine dry matter (DM), crude protein (CP), neutral detergent fibre (NDF), mineral matter (MM), DM degradability (Deg DM), NDF degradability (Deg NDF) and in situ and in vitro leaf-tissue degradability. Phytochemical prospection was performed, and 1H and 13C nuclear magnetic resonance applied to detect the presence of secondary compounds. The data were submitted to analysis of variance and Tukey’s test at 5%, and correlation analysis was carried out on the variables for leaf maturity in days. The levels of CP, NDF and Deg NDF showed a negative correlation with the increases in leaf age. Leaf-tissue degradation was restricted due to a physical barrier developed in the leaf fragments, which can be attributed to plant defence mechanisms. The in situ degradability of the cell wall components decreased with the increase in leaf age. The high levels of tannins and lignin, and the strong presence of flavonoids, should be considered for their anti-nutritional and pharmacological potential.

Downloads

Não há dados estatísticos.

Referências

Akin, D. E. (1989). Histological and physical factors affecting digestibility of forages. Agronomy Journal, 81(1), 17-25. doi: 10.2134/agronj1989.00021962008100010004x

Arzani, H., Zohdi, M., Fish, E., Amiri, G. H. Z., Nikkhah, A., & Wester, D. (2004). Phenological effects on forage quality of five grass species. Rangeland Ecology and Management, 57(6), 624-630. doi: 10.2458/azu_jrm_v57i6_arzani

Avice, J.-C., & Etienne, P. (2014). Leaf senescence and nitrogen remobilization efficiency in oilseed rape (Brassica napus L.). Journal of Experimental Botany, 65(14), 3813-3824. doi: 10.1093/jxb/eru177

Bahia, M. V., David, J. P., & David, J. M. (2010). Occurrence of biflavones in leaves of Caesalpinia pyramidalis specimens. Química Nova, 33(6), 1297-1300. doi: 10.1590/S0100-40422010000600015

Bahia, M. V., Santos, J. B., David, J. P., & David, J. M. (2005). Biflavonoids and other phenolics from Caesalpinia pyramidalis (Fabaceae). Journal of the Brazilian Chemical Society, 16(6B), 1402-1405. doi: 10.1590/S0103-50532005000800017

Barbehenn, R. V., & Constabel, C. P. (2011). Tannins in plant–herbivore interactions. Phytochemistry, 72(13), 1551-1565. doi: /10.1016/j.phytochem.2011.01.040

Barry, K. J., & Crowell-Davis, S. L. (1999). Gender differences in the social behavior of the neutered indoor-only domestic cat. Applied Animal Behaviour Science, 64(3), 193-211. doi: 10.1016/S0168-1591(99)00030-1

Belviso, S., Giordano, M., Dolci, P., & Zeppa, G. (2011). Degradation and biosynthesis of terpenoids by lactic acid bacteria isolated from cheese: first evidence. Dairy Science & Technology, 91(2), 227-236. doi: 10.1007/s13594-011-0003-z

Buxton, D. R., Mertens, D. R., & Fisher, D. S. (1996). Forage quality and ruminant utilization. Cool-Season Forage Grasses, 1, 229-266. doi: 10.1016/0377-8401(95)00885-3

Casali, A. O., Detmann, E., Valadares Filho, S., Pereira, J. C., Cunha, M., Detmann, K. d. S. C., & Paulino, M. F. (2009). Estimação de teores de componentes fibrosos em alimentos para ruminantes em sacos de diferentes tecidos. Revista Brasileira de Zootecnia, 38(1), 130-138. doi: 10.1590/S1516-35982009000100017

Chaves, T. P., Medeiros, F. D., Sousa, J. M. C., Silva, L. A. P., Lima, M. A., Coutinho, H. D. M., & Medeiros, A. C. D. (2019). Phytochemical characterization and mutagenicity, cytotoxicity, antimicrobial and modulatory activities of Poincianella pyramidalis (Tul.) LP Queiroz. Natural Product Research, 1-6. doi: 10.1080/14786419.2019.1566724

Cheng, A. X., Lou, Y.-G., Mao, Y.-B., Lu, S., Wang, L.-J., & Chen, X. Y. (2007). Plant terpenoids: Biosynthesis and ecological functions. Journal of Integrative Plant Biology, 49(2), 179-186. doi: 10.1111/j.1744-7909.2007.00395.x

Currie, H. A., & Perry, C. C. (2007). Silica in plants: biological, biochemical and chemical studies. Annals of Botany, 100(7), 1383-1389. doi: 10.1093/aob/mcm247

Dubois, M., Van den Broeck, L., & Inzé, D. (2018). The pivotal role of ethylene in plant growth. Trends in Plant Science, 23(4), 311-323. doi: 10.1016/j.tplants.2018.01.003

Etienne, P., Diquelou, S., Prudent, M., Salon, C., Maillard, A., & Ourry, A. (2018). Macro and micronutrient storage in plants and their remobilization when facing scarcity: The case of drought. Agriculture, 8(1), 14. doi: 10.3390/agriculture8010014

Fahad, S., Bajwa, A. A., Nazir, U., Anjum, S. A., Farooq, A., Zohaib, A., ... Saud, S. (2017). Crop production under drought and heat stress: plant responses and management options. Frontiers in Plant Science, 8(1147), 1-16. doi: 10.3389/fpls.2017.01147

França, A. A., Guim, A., Batista, A. M. V., Pimentel, R. M. M., Ferreira, G. D. G., & Martins, I. D. S. L. (2010). Anatomia e cinética de degradação do feno de Manihot glaziovii. Acta Scientiarum. Animal Sciences, 32(2), 131-138. doi: 10.4025/actascianimsci.v32i2.8800

Godde, C., Dizyee, K., Ash, A., Thornton, P., Sloat, L., Roura, E., ... Herrero, M. (2019). Climate change and variability impacts on grazing herds: Insights from a system dynamics approach for semi‐arid Australian rangelands. Global Change Biology, in press. doi: 10.1111/gcb.14669.

Goes, B. T. R. H., Tramontini, R. C. M., Cardim, S. T., Almeida, G. D., Ribeiro, J., Morotti, F., ... Brabes, K. C. S. (2012). Ruminal degradability of dry matter and crude protein of roughages for cattle. Revista Acadêmica Ciências Agrárias e Ambientais, 10(3), 285-291. doi: 10.7213/academica.7709

Gomes-Copeland, K. K. P., Lédo, A. S., Almeida, F. T. C., Moreira, B. O., Santos, D. C., Santos, R. A. F., ... David, J. P. (2018). Effect of elicitors in Poincianella pyramidalis callus culture in the biflavonoid biosynthesis. Industrial Crops and Products, 126, 421-425. doi: 10.1016/j.indcrop.2018.10.038

Gonzaga Neto, S., Batista, Â. M. V., Carvalho, F. F. R., Martínez, R. L. V., Barbosa, J. E. A. S., & Silva, E. O. (2001). Composição bromatológica, consumo e digestibilidade in vivo de dietas com diferentes níveis de feno de catingueira (Caesalpinea bracteosa), fornecidas para ovinos Morada Nova. Revista Brasileira de Zootecnia, 30(2), 553-562. doi: 10.1590/S1516-35982001000200035

Grabber, J. H. (2005). How do lignin composition, structure, and cross-linking affect degradability? A review of cell wall model studies. Crop Science, 45(3), 820-831. doi: 10.2135/cropsci2004.0191

Habermann, E., Oliveira, E. A. D., Contin, D. R., Delvecchio, G., Viciedo, D. O., Moraes, M. A., ... Martinez, C. A. (2019). Warming and water deficit impact leaf photosynthesis and decrease forage quality and digestibility of a C4 tropical grass. Physiologia Plantarum, 165(2), 383-402. doi: 10.1111/ppl.12891

Hui, D., Yu, C.-L., Deng, Q., Dzantor, E. K., Zhou, S., Dennis, S., . . . Shen, W. (2018). Effects of precipitation changes on switchgrass photosynthesis, growth, and biomass: A mesocosm experiment. PloS One, 13(2), e0192555. doi: 10.1371/journal.pone.0192555

Jawla, S., Kumar, Y., & Khan, M. S. Y. (2013). Isolation of antidiabetic principle from Bougainvillea spectabilis Willd (Nyctaginaceae) stem bark. Tropical Journal of Pharmaceutical Research, 12(5), 761-765. doi: 10.4314/tjpr.v12i5.15

Jung, H. G., & Vogel, K. P. (1986). Influence of lignin on digestibility of forage cell wall material. Journal of Animal Science, 62(6), 1703-1712. doi: 10.2527/jas1986.6261703x

Karnieli, A. (2003). Natural vegetation phenology assessment by ground spectral measurements in two semi-arid environments. International Journal of Biometeorology, 47(4), 179-187. doi: 10.1007/s00484-003-0169-z.

Köppen, W., & Geiger, R. (1928). Klimate der Erde. Gotha: Verlag Justus Perthes. Wall-map 150cmx200cm.

Lee, M. R. F. (2014). Forage polyphenol oxidase and ruminant livestock nutrition. Frontiers in Plant Science, 5, 1-9. doi: 10.3389/fpls.2014.00694

Lima, C. R., Bruno, R. L. A., Andrade, A. P., Pacheco, M. V., Quirino, Z. G. M., Silva, K. d. R. G., & Belarmino, K. d. S. (2018). Phenology of Poincianella pyramidalis (Tul.) L. P. Queiroz and its relationship with the temporal distribution of rainfall in the brazilian semi-arid region. Ciência Florestal, 28(3), 1035-1048. doi: 10.5902/1980509833387

Lima, L. M. S., Alquini, Y., Brito, C. J. F. A., & Deschamps, F. C. (2001). Degradação ruminal dos tecidos vegetais e composição bromatológica de cultivares de Axonopus scoparius (Flüegge) Kuhlm. e Axonopus fissifolius (Raddi) Kuhlm. Ciência Rural, 31, 509-515. doi: 10.1590/S0103-84782001000300025

Marles, M. A. S., Coulman, B. E., & Bett, K. E. (2008). Interference of condensed tannin in lignin analyses of dry bean and forage crops. Journal of Agricultural and Food Chemistry, 56(21), 9797-9802. doi: 10.1021/jf800888r

Mendonça Júnior, A. F., Braga, A. P., & Galvão, R. J. D. (2008). Composição bromatológica, consumo e digestibilidade in vivo de dietas com diferentes níveis de feno de catingueira (Caesalpinea pyramidalis Tul), fornecidas para ovinos SRD. Revista de Biologia e Ciências da Terra, 8(1), 190-197. doi: 10.1590/S1516-35982001000200035

Muir, J. P. (2011). The multi-faceted role of condensed tannins in the goat ecosystem. Small Ruminant Research, 98(1–3), 115-120. doi: 10.1016/j.smallrumres.2011.03.028

Oliveira, J. C. S., David, J. P., & David, J. M. (2016a). Biflavonoids from the bark roots of Poincianella pyramidalis (Fabaceae). Phytochemistry Letters, 16, 18-22. doi: 10.1016/j.phytol.2016.02.017

Oliveira, O. F., Santos, M. V. F., Cunha, M. V., Dubeux Júnior, J. C. B., Muir, J. P., Mello, A. C. L., ... Barros, G. F. N. P. (2016b). Botanical composition of Caatinga rangeland and diets selected by grazing sheep. Tropical Grasslands, 4(2), 71-81. doi: 10.1016/j.phytol.2016.02.017.

Piotrowska, A., & Bajguz, A. (2011). Conjugates of abscisic acid, brassinosteroids, ethylene, gibberellins, and jasmonates. Phytochemistry, 72(17), 2097-2112. doi: 10.1016/j.phytochem.2011.08.012.

Pires, A. J. V., Reis, R. A., Carvalho, G. G. P., Siqueira, G. R., Bernardes, T. F., Ruggieri, A. C., ... Roth, M. T. P. (2006). Degradabilidade ruminal da matéria seca, da fração fibrosa e da proteína bruta de forrageiras. Pesquisa Agropecuária Brasileira, 41(4), 643-648. doi: 10.1590/S0100-204X2006000400014

Raffrenato, E., Fievisohn, R., Cotanch, K. W., Grant, R. J., Chase, L. E., & Van Amburgh, M. E. (2017). Effect of lignin linkages with other plant cell wall components on in vitro and in vivo neutral detergent fiber digestibility and rate of digestion of grass forages. Journal of Dairy Science, 100(10), 8119-8131. doi: 10.3168/jds.2016-12364

Rahman, M. M., & Kawamura, O. (2011). Oxalate accumulation in forage plants: some agronomic, climatic and genetic aspects. Asian-Australasian Journal of Animal Sciences, 24(3), 439-448. doi: 10.5713/ajas.2011.10208

Reed, J. D. (1995). Nutritional toxicology of tannins and related polyphenols in forage legumes. Journal of Animal Science, 73(5), 1516-1528. doi: 10.2527/1995.7351516x

Santos, G. R. A., Batista, A. M. V., Guim, A., Santos, M. V. F., Silva, M. J. A., & Pereira, V. L. A. (2008). Determinação da composição botânica da dieta de ovinos em pastejo na Caatinga. Revista Brasileira de Zootecnia, 37(10), 1876-1883. doi: 10.1590/S1516-35982008001000023

Statistical Analysis Software [SAS]. (2004). SAS/STAT User guide, Version 9.1.2. Cary, NC: SAS Institute Inc.

Silva, J. L., Guim, A., Ferreira, M. A., & Soares, L. F. P. (2016). Forragens taniníferas na produção de caprinos e ovinos. Archivos de zootecnia, 65(252), 605-614. doi: 10.21071/az.v65i252.1933

Webb, M. A. (1999). Cell-mediated crystallization of calcium oxalate in plants. The Plant Cell, 11(4), 751-761. doi: 10.1105/tpc.11.4.751

Wilson, J. R., & Mertens, D. R. (1995). Cell wall accessibility and cell structure limitations to microbial digestion of forage. Crop Science, 35(1), 251-259. doi: 10.2135/cropsci1995.0011183X003500010046x

Publicado
2019-09-30
Como Citar
França, A. A. de, Silva, D. S. da, Fechine, J. T., Sousa, F. A. de, Andrade, A. P. de, & Lichston, J. E. (2019). Potential and restrictions of Poincianella pyramidalis (Tul.) L. P. Queiroz as native forage in the Brazilian semi-arid region . Acta Scientiarum. Animal Sciences, 42(1), e47460. https://doi.org/10.4025/actascianimsci.v42i1.47460
Seção
Forragicultura

0.9
2019CiteScore
 
 
29th percentile
Powered by  Scopus