Use of artificial neural network to model reproductive performance and mortality of non-descript rabbits
Resumo
This study was carried out to predict average number of kits per birth and mortality number of non-descript rabbits in Plateau State, Nigeria using artificial neural network (ANN). Data were obtained from a total of 100 rabbit farmers. The predicted mean value for number of kits per birth using ANN (6.60) was similar to the observed value (6.52). As regards mortality, the predicted mean value using ANN (17.75) was also similar to the observed value (17.80). Primary occupation, experience in rabbit keeping, flock size and credit type were the parameters of utmost importance in predicting number of kits per birth. The fairly high coefficient of determination (R2) (55.7%) and low root mean square error (RMSE) value of 1.22 conferred reliability on the ANN model. The R2 value obtained in the prediction of mortality using ANN implies that 61.1% of the variation in the number of mortality can be largely explained by the explanatory variables such as flock size, age of farmers, experience in rabbit keeping and average number of kits per birth. The low RMSE value of 3.82 also gave credence to the regression model. The present information may be exploited in taking appropriate management decisions to boost production.
Downloads
Referências
Adedeji, O. A., Osowe, C. O., & Folayan, J. A. (2015). Socio-economic characteristics and profitability analysis of rabbit production in Ondo State, Nigeria. European Journal of Physical and Agricultural Sciences, 3(3), 10-19.
Agea, I., García, M. L., Blasco, A., & Argente, M. J. (2019). Litter Survival Differences between Divergently Selected Lines for Environmental Sensitivity in Rabbits. Animals, 9(9), 603. doi: 10.3390/ani9090603
Ahmad, H. A. (2009). Poultry growth modeling using neural networks and simulated data. Journal of Applied Poultry Research, 18(3), 440-446. doi:10.3382/japr.2008-00064
Ajayi, F. O., Ologbose, F. I., & Esenowo, E. S. (2018). Pre-weaning and post weaning growth performance of rabbits: influence of genotype and litter size in a humid tropical environment. International Journal of Agriculture and Forestry, 8(9), 63-69. doi: 10.5455/ijlr.20171205103612
Amaefule, K. U., Iheukwumere, F. C., & Nwaokoro, C. C. (2005). A note on the growth performance and carcass characteristics of rabbits fed graded dietary levels of boiled pigeon pea seed (Cajanus cajan). Livestock Research for Rural Development, 17(5).
Ansa, A. A., Akpere, O., & Imasuen, J. A. (2017). Semen traits, testicular morphometry and histopathology of cadmium-exposed rabbit bucks administered methanolic extract of Phoenix dactylifera fruit. Acta Scientiarum. Animal Sciences, 39(2), 207-215. doi: 10.4025/actascianimsci.v39i2.32858
Archontoulis, S. V., & Miguez, F. E. (2015). Nonlinear Regression Models and Applications in Agricultural Research. Agronomy Journal, 107(2), 786–798. doi:10.2134/agronj2012.0506
Celik, S., Eyduran, E., Karadas, K., & Tariq, M. M. (2017). Comparison of predictive performance of data mining algorithms in predicting body weight in Mengali rams of Pakistan. Revista Brasileira de Zootecnia, 46(11), 863-872. doi: 10.1590/s1806-92902017001100005
Council for International Organizations of Medical Sciences [CIOMS]. (2002). International ethical guidelines for biomedical research involving human subjects. Bulletin of Medical Ethics, 182.
Contri, A., Zambelli, D., Faustini, M., Cunto, M., Gloria, A., & Carluccio, A. (2012). Artificial neural networks for the definition of kinetic subpopulations in electroejaculated and epididymal spermatozoa in the domestic cat. Reproduction, 144(3), 339–347. doi: 10.1530/REP-12-0125
Espinosa, J., Ferreras, M. C., Benavides, J., Cuesta, N., Pérez, C., García Iglesias, M. J., … Pérez, V. (2020). Causes of Mortality and Disease in Rabbits and Hares: A Retrospective Study. Animals, 10(1), 158. doi:10.3390/ani10010158
Fadare, A. O., & Fatoba, T. J. (2018). Reproductive performance of four breeds of rabbit in the humid tropics. Livestock Research for Rural Development, 30(7), 114.
Földešiová, M., Baláži, A., Chrastinová, Ľ., & Chrenek, P. (2013). Effect of Yucca Schidigera herbal extract in diet on weight gains of rabbit does (preliminary results). Slovak Journal of Animal Science, 46(2), 81-85.
Hamache, M., Benkortbi, O., Hanini, S., & Amrane, A. (2017). Application of multilayer perceptron for prediction of the rat acute toxicity of insecticides. Energy Procedia, 139, 37-42. doi: 10.1016/j.egypro.2017.11.169
Hungu, C. W., Gathumbi, P. K., Maingi, N., & Ng’ang’a, C. J. (2013). Production characteristics and constraints of rabbit farming in Central, Nairobi and Rift-valley provinces in Kenya. Livestock Research for Rural Development, 25(1).
Jimoh, O. A., & Ewuola, E. O. (2017). Milk yield and kit development of four breeds of rabbit in Ibadan, Nigeria.Journal of Animal Science and Technology, 59(1), 25. doi: 10.1186/s40781-017-0151-7
Lin, B., Lin, G., Liu, X., Ma, J., Wang, X., Lin, F., & Hu, L. (2015). Application of back-propagation artificial neural network and curve estimation in pharmacokinetics of losartan in rabbit. International Journal of Clinical and Experimental Medicine, 8(12), 22352-22358.
Lukefahr, S. D., & Cheeke, P. R. (1990). Rabbit project planning strategies for developing countries. (1) Practical considerations. Livestock Research for Rural Development, 2(3).
Rioja-Lang, F., Bacon, H., Connor, M., & Dwyer, C. M. (2019). Rabbit welfare: determining priority welfare issues for pet rabbits using a modified Delphi method. Veterinary Record Open, 6(1), e000363. doi: 10.1136/vetreco-2019-000363
Oloruntola, O. D., Ayodele, S. O., Adeyeye, S. A., & Agbede, J. O. (2018). Performance, haemato-biochemical indices and antioxidant status of growing rabbits fed on diets supplemented with Mucuna pruriens leaf meal. World Rabbit Science, 26(4), 277-285. doi: 10.4995/wrs.2018.10182
O'Neill, D. G., Craven, H. C., Brodbelt, D. C., Church, D. B., & Hedley, J. (2019). Morbidity and mortality of domestic rabbits (Oryctolagus cuniculus) under primary veterinary care in England. Veterinary Record, 186. doi:10.1136/ vetrec-2019-105592
Oseni, S. O., & Lukefahr, S. D. (2014). Rabbit production in low-input systems in Africa: Situation, knowledge and perspectives – A review. World Rabbit Science, 22, 147-160. doi: 10.4995/wrs.2014.1348
Rosell, J. M., & de la Fuente, L. F. (2016). Causes of mortality in breeding rabbits. Preventive Veterinary Medicine, 127, 56-63. doi:10.1016/j.prevetmed.2016.03.014
Salawu, E. O., Abdulraheem, M., Shoyombo, A., Adepeju, A., Davies, S., Akinsola, O., & Nwagu, B. (2014). Using artificial neural network to predict body weights of rabbits. Open Journal of Animal Sciences, 4(4), 182-186. doi:10.4236/ojas.2014.44023
Savietto, D., Martínez-Paredes, E., & Pascual, J. J. (2019). Influences of environment on the development and lifetime reproductive performance in domestic rabbit females. World Rabbit Science, 27(3), 123-133. doi:10.4995/wrs.2019.11968.
Silva, W. R., Scapinello, C., Moraes, G. V., Martins, E. N., Faria, H. G., & Ferreira, W. M. (2009). Reproductive performance of rabbits does submitted to different levels of digestible energy on diet and litter weaning ages. Acta Scientiarum. Animal Sciences, 31(2), 213-219. doi: 10.4025/actascianimsci.v31i2.6619
SPSS (2015). IBM SPSS Statistics for Windows. Chicago, MI: SPSS Inc.
Tablado, Z., Revilla, E., & Palomares, F. (2012). Dying like rabbits: general determinants of spatiotemporal variability in survival. Journal of Animal Ecology, 81(1), 150–161. doi: 10.1111/j.1365-2656.2011.01884.x
Welch, T., Coe, J. B., Niel, L., & McCobb, E. (2017). A survey exploring factors associated with 2890 companion-rabbit owners’ knowledge of rabbit care and the neuter status of their companion rabbit. Preventive Veterinary Medicine, 137, 13–23. doi: 10.1016/j.prevetmed.2016.12.008
Yakubu, A., Oluremi, O. I. A., & Ekpo, E. I. (2018). Predicting heat stress index in Sasso hens using automatic linear modeling and artificial neural network. International Journal of Biometeorology, 62(7), 1181-1186. doi: 10.1007/s00484-018-1521-7
Yakubu, A., & Madaki, J. (2017). Modelling growth of dual-purpose Sasso hens in the tropics using different algorithms. Journal of Genetics and Molecular Biology, 1(1), 1-9.
Yakubu, A., & Adua, M. M. (2010). Effect of stocking density on growth performance, carcass qualities and cost-benefit of weaned rabbits in the savanna zone of Nigeria. African Journal of Animal and Biomedical Sciences, 5(3), 106-109.
Zaborski, D., Ali, M., Eyduran, E., Grzesiak, W., Tariq, M. M., Abbas, F., … Tirink, C. (2019). Prediction of selected reproductive traits of indigenous Harnai sheep under the farm management system via various data mining algorithms. Pakistan Journal of Zoology, 51(2), 421-431. doi: 10.17582/journal.pjz/2019.51.2.421.431
Zanella-Calzada, L. A., Galván-Tejada, C. E., Chávez-Lamas, N. M., Rivas-Gutierrez, J., Magallanes-Quintanar, R., Celaya-Padilla, J. M., … Gamboa-Rosales, H. (2018). Deep artificial neural networks for the diagnostic of caries using socio-economic and nutritional features as determinants: Data from NHANES 2013–2014. Bioengineering, 5(2), 47. doi:10.3390/bioengineering5020047
DECLARAÇÃO DE ORIGINALIDADE E DIREITOS AUTORAIS
Declaro que o presente artigo é original, não tendo sido submetido à publicação em qualquer outro periódico nacional ou internacional, quer seja em parte ou em sua totalidade.
Os direitos autorais pertencem exclusivamente aos autores. Os direitos de licenciamento utilizados pelo periódico é a licença Creative Commons Attribution 4.0 (CC BY 4.0): são permitidos o compartilhamento (cópia e distribuição do material em qualqer meio ou formato) e adaptação (remix, transformação e criação de material a partir do conteúdo assim licenciado para quaisquer fins, inclusive comerciais.
Recomenda-se a leitura desse link para maiores informações sobre o tema: fornecimento de créditos e referências de forma correta, entre outros detalhes cruciais para uso adequado do material licenciado.