Colorimetric method as alternative to chromium (III) quantification in cattle feces

Palavras-chave: spectrophotometry; fecal output; external marker; chromium dioxide; validation.

Resumo

 One of the main factors to establish productivity of grazing cattle is the estimation of forage intake. For this, the most widely used technique is based on the estimation of fecal output using chromium dioxide as external marker. However, quantification can be expensive and sometimes not precise due to the methodology used for this purpose. Therefore, the aim of this study was to validate the colorimetric method for chromium quantification and to implement it in the estimation of fecal output in grazing cattle. The temperature, the digestion time and the wavelength for the measurement were evaluated. The method was validated for selectivity, linearity, detection and quantification limits, precision, accuracy, and stability. Results showed that temperature and digestion time are critical to improve sensitivity and quantification limits. The validation demonstrated that the method is suitable for the quantification of Cr2O3 in a wide range of concentrations, being statistically comparable with a reference method, and offering a reliable low cost and easy to implement alternative, to estimate fecal output in bovine digestibility studies.

Downloads

Não há dados estatísticos.

Referências

Abu-Arafeh, A., Jordan, H., & Drummond, G. (2016). Reporting of method comparison studies: a review of advice, an assessment of current practice, and specific suggestions for future reports. British Journal of Anaesthesia, 117 (5), 569–75. doi: 10.1093/bja/aew320

Brown, R. J. C., & Mustoe, C. L. (2014). Demonstration of a standard dilution technique for standard addition calibration. Talanta, 122, 97–100. doi:10.1016/j.talanta.2014.01.014

Cabral, Í. D. S., Azevêdo, J. A. G., Dos SantosPina, D., Pereira, L. G. R., De Almeida, F. M., Souza, L. L., & De Lima, R. F. (2017). Evaluation of internal markers as determinants of fecal dry matter output and digestibility in feedlot sheep. Semina:Ciencias Agrarias, 38(5), 3331–3339. doi:10.5433/1679-0359.2017v38n5p3331.

Canesin, R. C., Fiorentini, G., & Berchielli, T. T. (2012). Inovações e desafios na avaliação de alimentos na nutrição de ruminantes. Revista Brasileira de Saúde e Produção Animal, 13(4), 938-953. doi: 10.1590/S1519-99402012000400009

Correa, H. J., Pabón, M. L. & Carulla, J. E. (2009). Estimación del consumo de materia seca en vacas Holstein bajo pastoreo en el trópico alto de Antioquia. Livestock Research for Rural Development, 21(4), Article #59.

Falk-Windisch, H., Svensson, J. E., & Froitzheim, J. (2015). The effect of temperature on chromium vaporization and oxide scale growth on interconnect steels for Solid Oxide Fuel Cells. Journal of Power Sources, 287(1), 25–35. doi: 10.1016/j.jpowsour.2015.04.040

Fenton, T., & Fenton, M. (1979). An Improved Procedure For The Determination Of Chromic Oxide In Feed And Feces. Canadian Journal of Animal Science, 59(3), 631–634. doi: 10.4141/cjas79-081

Fernández, A. V., Díaz, A. C., Velurtas., S. M., & Fenucci, J. L. (2009). In vivo and in vitro protein digestibility of formulated feeds for Artemesia longinaris (Crustacea, Penaeidae). Brazilian Archives of Biology and Technology, 52(6), 1379-1386. doi: 10.1590/S1516-89132009000600009

Giavarina, D. (2015). Understanding Bland Altman analysis. Biochemia medica, 25(2), 141–151. doi: 10.11613/BM.2015.015

Guzman, A. E., Corona, L., Castrejon, F., Rosiles, R., & Gonzalez, M. (2017). Evaluation of chromium oxide and titanium dioxide as inert markers for calculating apparent digestibility in sheep. Journal of Applied Animal Research, 45(1), 275–279. doi: 10.1080/09712119.2016.1174124

Hayden, R. W. (2012). A Review of: “An R Companion to Applied Regression, Second Edition, by J. Fox and S. Weisberg”. Journal of Biopharmaceutical Statistics, 22(2), 418-419. doi: 10.1080/10543406.2012.635980

Hseu, Z.Y. (2004). Evaluating heavy metal contents in nine composts using four digestion methods. Bioresource Technology, 95(1), 53–59. doi: 10.1016/j.biortech.2004.02.008

Hu, B., Wang, J., Wang, C., Du, Y., & Zhu, J. (2016). CALPHAD-type thermodynamic assessment of the Ti–Mo–Cr–V quaternary system. Calphad, 55, 103–112. doi: 10.1016/j.calphad.2016.08.003

Kavouras, P., Pantazopoulou, P., Varitis, S., Vourlias, G., Chrissafis, K., Dimitrakopulos, G.P., … Mitrakas, M. (2015). Incineration of tannery sludge under oxic and anoxic conditions: Study of chromium speciation. Journal of Hazardous Materials, 283, 672-679, doi: 10.1016/j.jhazmat.2014.09.066

Li, P., & Hur, J. (2017). Utilization of UV-Vis spectroscopy and related data analyses for dissolved organic matter (DOM) studies: A review. Critical Reviews in Environmental Science and Technology, 47(3), 131–154. doi: 10.1080/10643389.2017.1309186

Ramírez, C., & Giraldo, L. (2017). Evaluation of dietary supplements containing castor cake on in situ degradation , diets with Kikuyu grass and dairy production in Holstein cows Evaluación de suplementos alimenticios conteniendo torta de higuerilla sobre la degradación in situ de dietas c. CES Medicina Veterinaria y Zootecnia, 12(2), 104–122. doi: 10.21615/cesmvz.12.2.3

Rocha, G. C., Palma, M. N. N., Detmann, E., & Filho, S. C. V. (2015). Evaluation of acid digestion techniques to estimate chromium contents in cattle feces. Pesquisa Agropecuaria Brasileira, 50(1), 92–95. doi: 0.1590/S0100-204X2015000100010

Şahan, S., Saçmaci, Ş., Kartal, Ş., Saçmaci, M., Şahin, U., & Ülgen, A. (2014). Development of a new on-line system for the sequential speciation and determination of chromium species in various samples using a combination of chelating and ion exchange resins. Talanta, 120, 391–397. doi: 10.1016/j.talanta.2013.12.030

Shrivastava, A., & Gupta, V.B. (2011). Methods for the determination of limit of detection and limit of quantitation of the analytical methods. Chronicles of Young Scientists, 2(1), 21-25. doi: 10.4103/2229-5186.79345

Souza, N. K., Detmann, E., Pina, D. S., Valadares, S. C., Sampaio, C. B., Queiroz, A. C., & Veloso, C. M. (2013). Evaluation of chromium concentration in cattle feces using different acid digestion and spectrophotometric quantification techniques. Arquivo Brasileiro de Medicina Veterinaria e Zootecnia, 65(5), 1472–1482. doi: 10.1590/S0102-09352013000500028.

Sprinkle, J. E., Baker S. D., Church, J. A., Findlay, J. R., Graf, S. M., Jensen, K. S., ... Hansen, D.W. (2018). Case Study: Regional assessment of mineral element concentrations in Idaho forage and range grasses. The Professional Animal Scientist, 34(5), 494-504. doi: 10.15232/pas.2017-01715.

Szabó, M., Kalmár, J., Ditrói, T., Bellér, G., Lente, G., Simic, N., & Fábián, I. (2018). Equilibria and kinetics of chromium(VI) speciation in aqueous solution – A comprehensive study from pH 2 to 11. Inorganica Chimica Acta, 472, 295–301. doi:10.1016/j.ica.2017.05.038

Verbinnen, B., Billen, P., Van Coninckxloo, M., & Vandecasteele, C. (2013). Heating Temperature Dependence of Cr(III) Oxidation in the Presence of Alkali and Alkaline Earth Salts and Subsequent Cr(VI) Leaching Behavior. Environmental Science & Technology, 47(11), 5858–5863. doi: 10.1021/es4001455

Publicado
2020-04-01
Como Citar
Torres Ospina, A., Zapata, J. A., Gil Gonzalez, J. H., Giraldo, L., & Valencia, D. M. (2020). Colorimetric method as alternative to chromium (III) quantification in cattle feces. Acta Scientiarum. Animal Sciences, 42(1), e48096. https://doi.org/10.4025/actascianimsci.v42i1.48096
Seção
Produção Animal

0.9
2019CiteScore
 
 
29th percentile
Powered by  Scopus