Nutritional value, fermentation losses and aerobic stability of elephant grass (Pennisetum purpureum Schum.) silage treated with exogenous fibrolytic enzymes

  • Maikon Figueredo Lemos Universidade Federal Rural de Pernambuco
  • Alexandro Pereira Andrade Faculdade Regional da Bahia
  • Danilo Gusmão de Quadros Universidade do Estado da Bahia / Texas A&M AgriLife Research and Extension Center
  • Pedro Henrique Ferreira da Silva Universidade Federal Rural de Pernambuco
  • Camila Oliveira Santos Universidade Federal de Viçosa
  • Caio Felipe Barros Souza Universidade de Brasília
  • Marcos Antonio Vanderlei Silva Universidade do Estado da Bahia
  • Aurielle Silva Medeiros Universidade Federal Rural de Pernambuco
  • Pedro Mouzinho de Oliveira Neto Universidade Federal Rural de Pernambuco
Palavras-chave: aerobic deterioration; digestibility; effluent losses; dry matter recovery.

Resumo

The aim of this study was to evaluate nutritional value, fermentation losses, and aerobic stability of elephant grass silage (Pennisetum purpureum Schum.) treated with exogenous fibrolytic enzymes. The experiment was conducted in a completely randomized design with four replicates (experimental silos) and five levels of fibrolytic enzymes (0, 1.5, 3.0, 4.5 and 6.0%). For this, the elephant grass was ensiled at 70 days of age in plastic buckets with 20L capacity. Silos were opened 60 days after sealing. Analyses were made for chemical composition, in vitro dry matter digestibility (IVDMD), effluent losses (EL), gas losses (GL) and dry matter recovery (DMR), as well as the aerobic stability of the silage. Data were analyzed with PROC REG of SAS® University, at 5% probability. There was an increase in IVDMD content (p < 0.0001) and reduction in NDF and ADF contents (p < 0.0001) according to enzyme levels. These results were related to the increase in the degradation of fiber fractions. There were higher EL (p = 0.0062) as a function of enzyme levels and aerobic deterioration after silo opening, at all levels tested. Thus, it can be concluded that the exogenous fibrolytic enzymes change the chemical composition of elephant grass silage, and increase its digestibility and nutritional value. Moreover, when used alone as an additive, fibrolytic enzymes are not able to recover all dry matter of this silage (with effluent and gas losses), and are not able to maintain aerobic stability in the first hours after opening the silos.

Downloads

Não há dados estatísticos.

Referências

Andrade, A. P., Quadros, D. G., Bezerra, A. R. G., Almeida, J. A. R, Silva, P. H. S., & Araújo, J. A. M (2012). Aspectos qualitativos da silagem de capim-elefante com fubá de milho e casca de soja. Semina: Ciências Agrárias, 33. doi: 10.5433/1679-0359.2012v33n3p1209

Antonio, G., Filla, M. G., Del Valle, T. A., Campana, M., & Morais, J. P. G. (2018). Efeitos de enzimas fibrolíticas sobre a degradação in situ da matéria seca e da fibra de forrageiras. Agrarian, 11(42), 363-370. doi: 10.30612/agrarian.v11i42.7488

Bernardes, T. F., & Chizzotti, F. H. M. (2012). Technological innovations in silage production and utilization. Revista Brasileira de Saúde e Produção Animal, 13(3), 629-641. doi: 10.1590/S1519-99402012000300004

Bernardes, T. F., Reis, R. A., & Moreira, A. L. (2005). Fermentative and microbiological profile of marandu-grass ensiled with citrus pulp pellets. Scientia Agricola, 62(3), 214-220. doi: 10.1590/S0103-90162005000300003

Bonfá, C. S., Castro, G. H. F., Villela, S. D. J., Santos, R. A., Evangelista, A. R., Jayme, C. G., ... & Barbosa, J. A. S. (2015). Silagem de capim-elefante adicionada de casca de maracujá. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 67(3), 801-808. doi: dx.doi.org/10.1590/1678-4162-7982

Dehghani, M. R., Weisbjerg, M. R., Hvelplund, T., & Kristensen, N. B. (2012). Effect of enzyme addition to forage at ensiling on silage chemical composition and NDF degradation characteristics. Livestock Sscience, 150(1-3), 51-58. doi: 10.1016/j.livsci.2012.07.031

Del Valle, T. A., Antonio, G., Zenatti, T. F., Campana, M., Zilio, E. M. C., Ghizzi, L. G., ... & Morais, J. P. G. (2019). Effects of xylanase on the fermentation profile and chemical composition of sugarcane silage. The Journal of Agricultural Science, 156(9), 1123–1129 1-7. doi: 10.1017/ S0021859618001090

Desta, S. T., Yuan, X., Li, J., & Shao, T. (2016). Ensiling characteristics, structural and nonstructural carbohydrate composition and enzymatic digestibility of Napier grass ensiled with additives. Bioresource Technology, 221, 447-454. doi: 10.1016/j.biortech.2016.09.068

De Nys, E., Engle, N. L., & Magalhães, A. R. (2016). Secas no Brasil: política e gestão proativas. Brasília, DF: Centro de Gestão e Estudos Estratégicos-CGEE.

Detmann, E., Souza, M. D., Valadares Filho, S. D. C., Queiroz, A. D., Berchielli, T. T., Saliba, E. D. O., ... & Azevedo, J. A. G. (2012). Métodos para análise de alimentos. Visconde do Rio Branco, MG: Suprema.

Ellis, J. L., Hindrichsen, I. K., Klop, G., Kinley, R. D., Milora, N., Bannink, A., & Dijkstra, J. (2016). Effects of lactic acid bacteria silage inoculation on methane emission and productivity of Holstein Friesian dairy cattle. Journal of Dairy Science, 99(9), 7159-7174. doi: 10.3168/jds.2015-10754

Ferrari Júnior, E., & Lavezzo, W. (2001). Qualidade da silagem de capim-elefante (Pennisetum purpureum Schum.) emurchecido ou acrescido de farelo de mandioca. Revista Brasileira de Zootecnia, 30(5), 1424-1431. doi: 10.1590/S1516-35982001000600006

Furtado, R. N., Carneiro, M. S. D. S., Coutinho, D. N., Cândido, M. J. D., & Silva, E. B. D. (2019). Fermentative losses and chemical composition of elephant grass silage added with castor bean hull. Revista Ciência Agronômica, 50(1), 140-147. doi: 10.5935/1806-6690.20190017

Jobim, C. C., Nussio, L. G., Reis, R. A., & Schmidt, P. (2007). Avanços metodológicos na avaliação da qualidade da forragem conservada. Revista Brasileira de Zootecnia, 36, 101-119. doi: 10.1590/S1516-35982007001000013

Khota, W., Pholsen, S., Higgs, D., & Cai, Y. (2016). Natural lactic acid bacteria population of tropical grasses and their fermentation factor analysis of silage prepared with cellulase and inoculant. Journal of Dairy Science, 99(12), 9768-9781. doi: 10.3168/jds.2016-11180

Muck, R. E., Nadeau, E. M. G., McAllister, T. A., Contreras-Govea, F. E., Santos, M. C., & Kung, L. (2018). Silage review: Recent advances and future uses of silage additives. Journal of Dairy Science, 101(5), 3980-4000. doi: 10.3168/jds.2017-13839

Nolan, P., Doyle, E., & O'Kiley, P. (2018). Annual production of grass silage for biogas: effects of fibrolytic enzyme additives on ensilage efficiency and specific methane yields. Agricultural Engineering International: CIGR Journal, 20(2), 98-115. doi: 10.3390/s18093133

Pereira, A. V., Lédo, F. J. D. S., & Machado, J. C. (2017). BRS Kurumi and BRS Capiaçu-New elephant grass cultivars for grazing and cut-and-carry system. Crop Breeding and Applied Biotechnology, 17(1), 59-62. doi: 10.1590/1984-70332017v17n1c9

Rassini, J. B. (2004). Período de estacionalidade de produção de pastagens irrigadas. Pesquisa Agropecuária Brasileira, 39(8), 821-825. doi: 10.1590/S0100-204X2004000800014

Santos, M. V. F., Gómez, A., Perea, J., García, A., Guim, A., & Pérez, M. (2010). Fatores que afetam o valor nutritivo da silagens de forrageiras tropicais. Archivos de Zootecnia, 59, 25-43. doi: 10.21071/az.v59iR

Statistical Analysis System [SAS]. (2015). SAS/STAT User’s guide, Version 9.4. Cary, NC: SAS Institute Inc.

Silva, P. H. F., Carvalho, C. A. B., Malafaia, P., Garcia, F. Z., Barbero, R. P., & Ferreira, R. L. (2019). Morphological and structural characteristics of Urochloa decumbens Stapf. deferred pasture grazed by heifers under two periods of protein-energy supplementation. Acta Scientiarum. Animal Sciences, 41, 1-9. doi: 10.4025/actascianimsci.v41i1.44425

Soltan, Y. A., Abdalla, A. L., Silva, L. R. F., Natel, A. S., Morsy, A. S., & Louvandini, H. (2013). Response of different tropical pasture grass species to treatments with fibrolytic enzymes in terms of in vitro ruminal nutrient degradation and methanogenesis. Animal Nutrition and Feed Technology, 13(3), 551-568.

Stella, L. A., Peripolli, V., Prates, E. R., & Barcellos, J. (2016). Chemical composition of corn and sorghum silage with inclusion of whole-plant soybeans. Boletim de Indústria Animal, 73(1). doi: 10.17523/bia.v73n1p73

Tilley, J. M. A., & Terry, R. A. (1963). A two‐stage technique for the in vitro digestion of forage crops. Grass and Forage Science, 18(2), 104-111.

Veriato, F. T., Pires, D. A. D. A., Tolentino, D. C., Alves, D. D., Jayme, D. G., & Moura, M. M. A. (2018). Fermentation characteristics and nutritive values of sorghum silages. Acta Scientiarum. Animal Sciences, 40, e34458. doi: 10.4025/actascianimsci.v40i1.34458

Publicado
2020-06-08
Como Citar
Lemos, M. F., Andrade, A. P., Quadros, D. G. de, Silva, P. H. F. da, Santos, C. O., Souza, C. F. B., Silva, M. A. V., Medeiros, A. S., & Oliveira Neto, P. M. de. (2020). Nutritional value, fermentation losses and aerobic stability of elephant grass (Pennisetum purpureum Schum.) silage treated with exogenous fibrolytic enzymes. Acta Scientiarum. Animal Sciences, 42(1), e48272. https://doi.org/10.4025/actascianimsci.v42i1.48272
Seção
Forragicultura

0.9
2019CiteScore
 
 
29th percentile
Powered by  Scopus