Inferring phenotypic causal structures among body weight traits via structural equation modeling in Kurdi sheep

  • Yahya Mohammadi Ilam University
  • Davoud Ali Saghi Khorasan Razavi Agricultural and Natural Resources Research and Education Center
  • Ali Reza Shahdadi Khorasan Razavi Agricultural and Natural Resources Research and Education Center
  • Guilherme Jordão de Magalhães Rosa University of Wisconsin
  • Morteza Sattaei Mokhtari University of Jiroft
Palavras-chave: causal effects; growth traits; predictive ability; sheep.

Resumo

Data collected on 2550 Kurdi lambs originated from 1505 dams and 149 sires during 1991 to 2015 in Hossein Abad Kurdi Sheep Breeding Station, located in Shirvan city, North Khorasan province, North-eastern area of Iran, were used for inferring causal relationship among the body weights at birth (BW), at weaning (WW), at six-month age (6MW), at nine-month age (9MW) and yearling age (YW). The inductive causation (IC) algorithm was employed to search for causal structure among these traits. This algorithm was applied to the posterior distribution of the residual (co)variance matrix of a standard multivariate model (SMM). The causal structure detected by the IC algorithm coupling with biological prior knowledge provides a temporal recursive causal network among the studied traits. The studied traits were analyzed under three multivariate models including SMM, fully recursive multivariate model (FRM) and IC-based multivariate model (ICM) via a Bayesian approach by 100,000 iterations, thinning interval of 10 and the first 10,000 iterations as burn-in. The three considered multivariate models (SMM, FRM and ICM) were compared using deviance information criterion (DIC) and predictive ability measures including mean square of error (MSE) and Pearson's correlation coefficient between the observed and predicted values (r(y, )) of records. In general, structural equation based models (FRM and ICM) performed better than SMM in terms of lower DIC and MSE and also higher r(y, ). Among the tested models ICM had the lowest (36678.551) and SMM had the highest (36744.107)DIC values. In each case of the traits studied, the lowest MSE and the highest r(y, ) were obtained under ICM. The causal effects of BW on WW, WW on 6MW, 6MW on 9MW and 9MW on YW were statistically significant values of 1.478, 0.737, 0.776 and 0.929 kg, respectively (99% highest posterior density intervals did not include zero).

Downloads

Não há dados estatísticos.

Referências

Abegaz, S., Van Wyk, J. B., & Olivier, J. J. (2005). Model comparisons and genetic and environmental parameter estimates of growth and the Kleiber ratio in Horro sheep. South African Journal of Animal Science, 35(1),30-40. doi: 10.4314/sajas.v35i1.4046

Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control,19(6), 716–723. doi: 10.1109/TAC.1974.1100705

AmouPosht-e Masari, H., Hafezian, S. H., Arpanahi, R. A., Mokhtari, M. S., & RahimiMianji, G. (2018). Estimation of genetic parameters and genetic trends for growth traits in Lori Bakhtiari sheep using structural equation models. Animal Production Research, 7,83-96.

Boujenane, I., & Kansari, J. (2002). Estimates of (co)variances due to direct and maternal effects for body weights in Timahdite sheep. Animal Science, 74(3), 409-414. doi: 10.1017/S1357729800052553

Bouwman, A. C., Valente, B. D., Janss, L. L. G., Bovenhuis, H., & Rosa, G. J. M. (2014). Exploring causal networks of bovine milk fatty acids in a multivariate mixed model context. Genetic Selection Evolution, 46(1), 2. doi: 10.1186/1297-9686-46-2

Gianola, D., & Sorensen, D. (2004). Quantitative genetic models for describing simultaneous and recursive relationships between phenotypes. Genetics,167(3),1407-1424.

Inoue, K., Valente, B. D., Shoji, N., Honda, T., Oyama, K., & Rosa, G. J. M. (2016). Inferring phenotypic causal structures among meat quality traits and the application of a structural equation model in Japanese Black cattle. Journal Animal Science, 94, 4133-4142. doi: 10.2527/jas.2016-0554

Jafari, S., Hashemi, A., Darvishzadeh, R., & Manafiazar, G. (2016). Genetic parameters of live body weight, body measurements, greasy fleece weight, and reproduction traits in Makuie sheep breed. Spanish Journal of Agricultural Research, 12(3), 653-663. doi: 10.5424/sjar/2014123-4564

Jafaroghli, M., Rashidi, A., Mokhtari, M. S., & Mirzamohammadi, E. (2013). Estimation of genetic parameters for body weight traits in Baluchi sheep. Journal of Livestock Science and Technology, 1(2), 28-88.

Maturana, E. L., Campos, G., Wu, X. L., Gianola, D., Weigel, K. A., & Rosa G. J. M. (2010). Modeling relationships between calving traits: a comparison between standard and recursive mixed models. Genetic Selection Evolution, 42(1),1. doi: 10.1186/1297-9686-42-1

Maturana, E., Legarra, A., Varona, L., & Ugarte, E. (2007). Analysis of fertility and Dystocia in Holsteins using recursive models to handle censored and categorical data. Journal Dairy Science, 90(4), 2012-2024. doi: 10.3168/jds.2005-442

Meyer, K. (2007). WOMBAT-A tool for mixed model analyses in quantitative genetics by REML. Journal of Zhejiang University SCIENCE B, 8(11), 815-821. doi: 10.1631/jzus.2007.B0815

Misztal, I., Tsuruta, S., Lourenso, D. A. L., Masuda, Y., Aguilar, I., Legarra, A., & Vitezica, Z. (2018). Manual for BLUPF90 family of programs. Retrieved from: http://nce.ads.uga.edu/wiki/doku.php?id=documentation

Mohammadi, Y., Rashidi, A., Mokhtari, M. S., & Esmailizadeh, A. K. (2010). Quantitative genetic analysis of growth traits and Kleiber ratios in Sanjabi sheep. Small Ruminant Research,93(2-3),88-93. doi: 10.1016/j.smallrumres.2010.05.005

Mokhtari, M. S., Moghbeli Damaneh, M., & Arpanahi, R. A. (2018). The application of recursive multivariate model for genetic evaluation of early growth traits in Raeini Chasmere goat: A comparison with standard multivariate model. Small Ruminant Research,165, 54-61. doi: 10.1016/j.smallrumres.2018.06.008

Mokhtari, M. S., Rashidi, A., & Mohammadi, Y. (2008). Estimation of genetic parameters for post-weaning traits of Kermani sheep. Small Ruminant Research, 80(1), 22-27. doi: 10.1016/j.smallrumres.2008.08.002

Pearl, J. (2000). Causality: Models, Reasoning and Inference. Cambridge, UK: Cambridge University Press.

R Development Core Team (2009). R: A Language and Environment for Statistical Computing. Vienna, AU: R Foundation for Statistical Computing.

Rashidi, A., Mokhtari, M. S., Jahanshahi, A. S., & Abadi, M. R. M. (2008). Genetic parameter estimates of pre-weaning growth traits in Kermani sheep. Small Ruminant Research, 74(1), 165-171. doi: 10.1016/j.smallrumres.2007.06.004

Rosa, G. J. M., Valente, B. D., Campos, G.,Wu, X. L., Gianola, D., & Silva, M. (2011). AInferring causal phenotype networks using structural equation models. Genetic Selection Evolution, 43, 6. doi: 10.1186/1297-9686-43-6

Saghi, D. A., & Shahdadi, A. R. (2017). Estimates of genetic and phenotypic parameters for reproductive traits in Iranian native Kurdi sheep. Acta Scientiarum Animal Science, 39(3), 323-328. doi: 10.4025/actascianimsci.v39i3.35378

Saghi, D. A., Shahdadi, A. R., Borzalabad, F. K., & Mohammadi, K. (2018). Estimates of covariance functions for growth of Kurdi sheep in Iran using random regression models. Small Ruminant Research,162, 69-76.

Shahdadi, A. R., & Saghi, D. A. 2016. Estimating genetic parameters of body weight traits in Kourdi sheep. Iranian Journal of Applied Animal Science, 6(3), 657-663.

Sorensen, D. A., & Gianola, D. (2002). Likelihood, Bayesian and MCMC methods in quantitative genetics. New York, NY: Springer.

Statistical Analysis System [SAS]. (2004). SAS Users’ Guide, Version 9.1. Cary, NC: SAS Institute Inc.

Tosh, J. J., & Kemp, R. A. (1994). Estimation of variance components for lamb weights in three sheep populations. Journal of Animal Science, 72(5),1184-1190. doi: 10.2527/1994.7251184x

Valente, B. D., & Rosa, G. J. M. (2013). Mixed effects structural equation models and phenotypic causal networks. In C. Gondro (Ed.), Genome-Wide Association Studies and Genomic Prediction. Totowa, NJ: Humana Press.

Valente, B. D., Rosa, G. J. M., Campos, G., Gianola, D., & Silva, M. A. (2010). Searching for recursive causal structures in multivariate quantitative genetics mixed models. Genetics, 185(2),633-644. doi: /10.1534/genetics.109.112979

Valente, B. D., Rosa, G. J. M., Gianola, D., Wu, X. L., & Weigel, K. (2013). Is structural equation modeling advantageous for the genetic improvement of multiple traits. Genetics, 194(3), 561-572. doi: 10.1534/genetics.113.151209

Valente, B. D., Rosa, G. J. M., Silva, M. A., Teixeira, R. B., & Torres, R. A. (2011). Searching for phenotypic causal networks involving complex traits: an application to European quail. Genetic Selection Evolution, 43, 37.

Wright, S. (1921). Correlation and causation. Journal of Agricultural Research, 20(7), 557-585.

Wright, S. (1934). An analysis of variability in number of digits in an inbred strain of guinea pigs. Genetics, 19, 506-536.

Publicado
2020-06-08
Como Citar
Mohammadi, Y., Saghi, D. A., Shahdadi, A. R., Rosa, G. J. de M., & Mokhtari, M. S. (2020). Inferring phenotypic causal structures among body weight traits via structural equation modeling in Kurdi sheep. Acta Scientiarum. Animal Sciences, 42(1), e48823. https://doi.org/10.4025/actascianimsci.v42i1.48823
Seção
Reprodução e Melhoramento Animal

0.9
2019CiteScore
 
 
29th percentile
Powered by  Scopus