Drone production, semen viability and spermatozoa longevity of Africanized Apis mellifera

  • André Luiz Halak Cooperativa Agricola e Apícola das Beiras
  • Pedro da Rosa Santos Universidade Estadual de Maringá
  • Robson Marcelo Rossi Universidade Estadual de Maringá
  • Priscila Wielewski Universidade Estadual de Maringá
  • Gentil Vanini de Moraes Universidade Estadual de Maringá
  • Vagner de Alencar Arnaut de Toledo Universidade Estadual de Maringá http://orcid.org/0000-0003-1814-9703
Palavras-chave: honeybee genetics; honeybee nutrition; soybean protein; Africanized honeybee reproduction.

Resumo

Characteristics correlated with beekeeping production, less influenced by the environment and that can be controlled by management techniques, can help in the selection of colonies with higher production capacity, aiming to improve breeding programs. This research was carried out to evaluate the production of Africanized Apis mellifera drones and the longevity of spermatozoa from different genetic groups when supplemented with protein or not. Two genetic groups were used: one selected for royal jelly production from the Africanized honeybee breeding program and another without genetic selection. In both groups, the number of drone brood and the quality of semen were evaluated every 30 days, for five months. Statistical analysis was performed using Bayesian Inference. Statistical difference was found for the drone production among the treatments, and colonies without genetic selection produced more males (187.80 ± 11.15) than the selected colonies (93.07 ± 8.88). The selected colonies for royal jelly production presented greater efficiency in the reproductive cycle of males, because they produced fewer drones than colonies without genetic selection, however, with 31% greater semen viability.

Downloads

Não há dados estatísticos.

Referências

Abdelkader, F. B., Kairo, G., Tchamitchian, S., Cousin, M., Senechal, J., Crauser, D., … Brunet, J. L. (2014). Semen quality of honey bee drones maintained from emergence to sexual maturity under laboratory, semi-field and field conditions. Apidologie, 45(2), 215-223. doi: 10.1007/s13592-013-0240-7

Al-Tikrity, W. S., Hillmann, R. C., Benton, A. W., & Clark, W. W. (1971). A new instrument for brood measurement in a honeybee colony. American Bee Journal, 111(1), 20-21, 26.

Amiri, E., Micheline, M. K., Rueppell, O., & Tarpy, D. R. (2017). Queen quality and the impact of honey bee diseases on queen health: potential for interactions between two major threats to colony health. Insects, 8(2), 48. doi: 10.3390/insects8020048

Avila, F. W., Sirot, L. K., Laflamme, B. A., Rubinstein, C. D., & Wolfner, M. F. (2011). Insect seminal fluid proteins: identification and function. Annual Review of Entomology, 56(1), 21-40. doi: 10.1146/annurev-ento-120709-144823

Baitala, T. V., Faquinello, P., Toledo, V. A. A., Mangolin, C. A., Martins, E. N., & Ruvolo-Takasusuki, M. C. C. (2010). Potential use of major royal jelly proteins (MRJPs) as molecular markers for royal jelly production in Africanized honeybee colonies. Apidologie, 41(2), 160-168. doi: 10.1051/apido/2009069

Baer, B., Heazlewood, J. L., Taylor, N. L., Eubel, H., & Millar, A. H. (2009). The seminal fluid proteome of the honeybee Apis mellifera. Proteomics, 9(8), 2085-2097. doi: 10.1002/pmic.200800708

Billard, R., & Cosson, M. P. (1992). Some problems related to the assesment of sperm motility in freshwater fish. The Journal of Experimental Zoology, 261(2), 122-131. doi: 10.1002/jez.1402610203

Bratkowski, J., Pirk, C. W. W., Neumann, P., & Wilde, J. (2012). Journal of Apicultural Research, 51(4), 336-341. doi: 10.3896/IBRA.1.51.4.07

Boes, K. E. (2010). Honeybee colony drone production and maintenance in accordance with environmental factors: an interplay of queen and worker decisions. Insectes Sociaux, 57(1), 1-9. doi: 10.1007/s00040-009-0046-9

Cobey, S. W., Tarpy, D. R., & Woyke, J. (2013). Standard methods for instrumental insemination of Apis mellifera queens. Journal of Apicultural Research, 52(4), 1-18. doi: 10.3896/IBRA.1.52.4.09

Couvillon, M. J., Hughes, W. O., Perez-Sato, J. A., Martin, S. J., Roy, G. G., & Ratnieks, F. L. (2010). Sexual selection in honey bees: colony variation and the importance of size in male mating success. Behavioral Ecology, 21(3), 520-525. doi: 10.1093/beheco/arq016

Czekońska, K., Chuda-Mickiewicz B., & Samborski J. (2015). Quality of honey bee drones reared in colonies with limited and unlimited access to pollen. Apidologie, 46(1), 1-9. doi: 10.1007/s13592-014-0296-z

Gençer, H. V., & Kahya, Y. (2011). The viability of sperm in lateral oviducts and spermathecae of instrumentally inseminated and naturally mated honey bee (Apis mellifera L.) queens. Journal of Apicultural Research, 50(3), 190–194. doi: 10.3896/IBRA.1.50.3.02

Kahya, Y., Gençer, H. V., & Woyke, J. (2008). Weight at emergence of honey bee (Apis mellifera caucasica) queens and its effect on live weights at the pre and post mating periods. Journal of Apicultural Research, 47(2), 118-125. doi: 10.1080/00218839.2008.11101437

King, M., Eubel, H., Millar, A. H., & Baer, B. Proteins within the seminal fluid are crucial to keep sperm viable in the honeybee Apis mellifera. Journal of Insect Physiology, 57(3), 409-414. doi: 10.1016/j.jinsphys.2010.12.011

Koeniger, G., Koeniger, N., Tingek, S., & Phiancharoen, M. (2005). Variance in spermatozoa number among Apis dorsata drones and among Apis mellifera drones. Apidologie, 36(2), 279-284. doi: 10.1051/apido:2005009

Parpinelli, R. S., Ruvolo-Takasusuki, M. C. C., & Toledo, V. A. A. (2014). MRJP microsatellite markers in Africanized Apis mellifera colonies selected on the basis of royal jelly production. Genetics and Molecular Research, 13(3), 6724-6733. doi: 10.4238/2014.August.28.16

R Development Core Team. (2019). R: A language and environment for statistical computing. Vienna, AU: R Foundation for Statistical Computing.

Rhodes, J. W., Harden, S., Spooner-Hart, R., Andersen, D. L., & Wheen, G. (2011). Effects of age, season and genetics on semen and sperm production in Apis mellifera drones. Apidologie, 42(1), 29-38. doi: 10.1051/apido/2010026

Seitz, N., Traynor, K. S., Steinhauer, N., Rennich, K., Wilson, M. E., Ellis, J. D., … Van Engelsdorp, D. (2015). A national survey of managed honey bee 2014–2015 annual colony losses in the USA. Journal of Apicultural Research, 54(4), 292–304. doi: 10.1080/00218839.2016.1153294

Sereia, M. J., Toledo, V. A. A., Faquinello, P., Costa-Maia, F. M., Castro, S. E. S., Ruvolo-Takasusuki, M. C. C., & Furlan, A. C. (2010). Lifespan of Africanized honey bees fed with various proteic supplements. Journal of Apicultural Science, 54(2), 37-49.

Smith, M. L., Ostwald, M. M., Loftus, J. C., & Seeley, T. D. (2014). A critical number of workers in a honeybee colony triggers investment in reproduction. Naturwissenschaften, 101(10), 783-790. doi: 10.1007/s00114-014-1215-x

Publicado
2020-04-02
Como Citar
Halak, A. L., Santos, P. da R., Rossi, R. M., Wielewski, P., Moraes, G. V. de, & Toledo, V. de A. A. de. (2020). Drone production, semen viability and spermatozoa longevity of Africanized Apis mellifera. Acta Scientiarum. Animal Sciences, 42(1), e49050. https://doi.org/10.4025/actascianimsci.v42i1.49050
Seção
Produção Animal

0.9
2019CiteScore
 
 
29th percentile
Powered by  Scopus