Effects of three Bacillus specious on hatchability, growth performance and serum biochemistry in Japanese quails fed diet contaminated with Aflatoxin B1

  • Naheed Mojgani Research and Development Department Razi Vaccine and Serum Research Institute-‎Agriculture Research Education and Extension Organization, Karaj, IR Iran
  • Niloofar Razmgah Tarbiat Modares University
  • Mohammad Amir Karimi Torshizi Tarbiat Modares University
  • Mohammad Reza Sanjabi Iranian Research Organization for Science & Technology
Palavras-chave: Bacillus. sp.; Aflatoxin B1; japanese quail; hatchability; productive performance.

Resumo

 In total, 240 one-day–old Japanese quails (Coturnix Coturnix Japonica) allocated at random to 6 treatments with 4 replicates and 10 birds in each. Treatments used were: 1) Negative control (without any additives or AFB1); 2) Positive control (basal diet + 2.5 ppm AFB1; 2); 3) TA008 (positive control + 108 cfu/ml Bacillus. megaterium TA008); 4) TA049 (positive control + 108 cfu mL-1 Bacillus. subtilis TA049); 5) TA010 (positive control+ 108 cfu mL-1 Brevibacillus brevis TA010) and 6) P (positive control + 2.5 g kg-1 Polysorb® in feed). Hatchability and embryonic mortality were significantly influenced by additives and AFB1 (p < 0.05). Birds fed TA008 improved 12 % hatchability and reduced 10 % embryonic mortality in compared to positive control (p < 0.05). Weight gain and feed conversion ratio did not affected by treatments (p > 0.05). Feed intake was significantly improved in birds feeding by TA008 at 0-21 days (p < 0.05). There were significant differences on relative weights of carcass, gizzard and proventriculus among treatments (p < 0.05). Serum total protein, albumin, cholesterol, glucose, HDL, globulin and uric acid were significantly affected by treatments (p < 0.05). These results showed that the inclusion of bacillus megaterium as potential probiotic into contaminated diets could improve the adverse effects of AFB1 in Japanese quails.

Downloads

Não há dados estatísticos.

Referências

Abbès, S., Salah-Abbès, J. B., Jebali, R., Younes, R. B., & Oueslati, R. (2016) Interaction of aflatoxin B1 and fumonisin B1 in mice causes immunotoxicity and oxidative stress: possible protective role using lactic acid bacteria. Journal of Immunotoxicology, 13(1), 46–54. doi: 10.3109/1547691X.2014.997905

Agboola, A. F., Omidiwura, B. R. O., Odu, O., Odupitan, F. T., & Iyayi, E. A. (2015). Effect of probiotic and toxin binder on performance. Intestinal micobiota and gut morphology in broiler chickens. Journal of Animal Science Advances, 5(7), 1369-1379. doi: 10.5455/jasa.20150709085312

Bagherzadeh Kasmani, F., Karimi Torshizi, M. A., Allameh, A., & Shariatmadari, F. (2012). A novel aflatoxin-binding Bacillus probiotic: Performance, serum biochemistry, and immunological parameters in Japanese quail. Poultry Science Journal, 91(8), 1846–1853. doi: 10.3382/ps.2011-01830

Bagherzadeh Kasmani, F., & Mehri, M. (2015). Effects of a multi-strain probiotics against aflatoxicosis in growing Japanese quails. Livestock Science, 177, 110-116. doi: 10.1016/j.livsci.2015.04.018

Bovo, F., Franco, L. T., Kobashigawa, E., Rottinghaus, G. E., Ledoux, D. R., & Oliveira, C. A. F. (2015). Efficacy of beer fermentation residue containing saccharomyces cerevisiae cells for ameliorating aflatoxicosis in broilers. Poultry Science Journal, 94(5), 934–942. doi: 10.3382/ps/pev067

Bryden, W. L. (2012). Mycotoxin contamination of the feed supply chain: Implications for animal productivity and feed security. Animal Feed Science and Technology, 173(1-2), 134-158. doi: 10.1016/j.anifeedsci.2011.12.014

Chen, X., Horn, N., & Applegate, T. J. (2014). Efficiency of hydrated sodium calcium aluminosilicate to ameliorate the adverse effects of graded levels of aflatoxin B1 in broiler chicks. Poultry Science Journal, 93(8), 2037–2047. doi: 10.3382/ps.2014-03984

Denli, M., Blandon, J. C., Guynut, M. E., Salado, S., & Perez, J. F. (2009). Effect of dietary aflaDetox on performance, serum biochemistry, histopathological changes, and aflatoxin residues in broilers exposed to aflatoxin B1. Poultry Science Journal, 88(7), 1444- 1451. doi: 10.3382/ps.2008-00341

Dersjant-Li, Y., Verstegen, M. W. A., & Gerrits, W. J. J. (2003). The impact of low concentrations of aflatoxin, deoxynivalenol or fumonisin in diets on growing pigs and poultry. Nutrition Research Revista, 16(2), 223–239. doi: 10.1079/NRR200368

Diaz, G. J., Calabrese, E., & Blain, R. (2008). Aflatoxicosis in chickens (Gallus gallus): An example of hormesis?. Poultry Science Journal, 87(4), 727–732. doi: 10.3382/ps.2007-00403

Fan, Y., Zhao, L., Ji, C., Li, X., Jia, R., Xi, L., … Ma, Q. (2015). Protective effects of bacillus subtilis ansb060 on serum biochemistry, histopathological changes and antioxidant enzyme activities of broilers fed moldy peanut meal naturally contaminated with aflatoxins. Toxins, 7(8), 3330-3343. doi: 10.3390/toxins7083330

Farzaneh, M., Shi, Z-Q., Ghassempour, A., Sedaghat, N., Ahmadzadeh, M., Mirabdoltathy, M., & Javan-Nikkhah, M. (2012). Aflatoxin B1 degradation by Bacillus subtilis UTBSP1 isolated from pistachio nuts of Iran. Food Control, 23(1), 100-106. doi: 10.1016/j.foodcont.2011.06.018

Gao, X., Ma, Q., Zhao, L., Lei, Y., Shan, Y., & Ji, C. (2011). Isolation of Bacillus subtilis: screening for aflatoxins B1, M1, and G1 detoxification. European Food Research and Technology, 232(6), 957-962. doi: 10.1007/s00217-011-1463-3

Guan, S., Zhao, L., Ma, Q., Zhou, T., Wang, N., Hu, X., & Ji, C. (2010). In vitro efficacy of Myxococcus fulvus ANSM068 to biotransform aflatoxin B1. International Journal of Molecular Sciences, 11(10), 4063-4079. doi: 10.3390/ijms11104063

Hassan, Z. U., Zargham-Khan, M., Saleemi, M. K., Khan, A., Javed, I., & Bhatti, S. A. (2012). Toxic pathological effects of in ovo inculation of Ochratoxin A (OTA) in chick embryos and subsequently in hatched chicks. Toxicological Pathology, 40(1), 33-39. doi: 10.1177/0192623311425058

Hossain, M. M., Begum, M., & Kim, I. H. (2015). Effect of Bacillus subtilis, Clostridium butyricum and Lactobacillus acidophilus endospores on growth performance, nutrient digestibility, meat quality, relative organ weight, microbial shedding and excreta noxious gas emission in broilers. Journal of Veterinarian Medicine, 60(2), 77-86. doi: 10.17221/7981-VETMED

Howarth, B. & Wyatt, R. D. (1976). Effect of dietary aflatoxin on fertility, hatchability, and progeny performance of broiler breeder hens. Applied and Environmental Microbiology, 31(5), 680- 684.

International Agency for Research on Cancer [IARC]. (2002). Some traditional herbal medicines, some mycotoxins, naphthalene and styrene. Lyon, FR: IARC Working Group on the Evaluation of Carcinogenic Risk to Humans.

Kabir, S. M. L., Rahman, M. M., Rahman, M. B., & Ahmed, S. U. (2004). The dynamics of probiotics on growth performance and immune response in broilers. International Journal of Poultry Science, 3(5), 361-364. doi: 10.3923/ijps.2004.361.364

Lee, A., Cheng, K. C., & Liu, J. R. (2017). Isolation and characterization of a Bacillus amyloliquefaciens strain with zearalenone removal ability and its probiotic potential. PLoS. One, 12, 1-21. doi: 10.1371/journal.pone.0182220

Madrigal-Santillan, E., Alvarez- Gonzale, I., Marquez-Marquez, R., Velazquez- Guadarrama, N., & Madrigal-Bujaidar, E. (2007). Inhibitory effect of Mannan on the toxicity produced in mice fed aflatoxin B1 contaminated corn. Archive of Environmental contamination and Toxicology, 53(3), 466-472. doi: 10.1007/s00244-006-0074-7

Magnoli, A. P., Monge, M. P., Miazzo, R. D., Cavaglieri, L. R., Magnoli, C. E., Merkis, C. I., ... Chiacchiera, S. M. (2011). Effect of low levels of aflatoixin B1 on performance, biochemical parameters, and aflatoxin B1 in broiler liver tissues in the presence of monensin and sodium bentonite. Poultry Science Journal, 90(1), 48-58. doi: 10.3382/ps.2010-00971

Mohamed, E. Z. (2011). Impact of mycotoxins on humans and animals. Journal of Saudi Chemical Society, 15(2), 129e44. doi: 10.1016/j.jscs.2010.06.006

Monson, M, S., Settlage, R. E., Mendoza, K. M., Rawal, S., El-Nezami, H. S., Coulombe, R. A., & Reed, K. M. (2015). Modulation of the spleen transcriptome in domestic turkey (Meleagris gallopavo) in response to aflatoxin B1 and probiotics. Immunogenetics, 67(3), 163-178. doi: 10.1007/s00251-014-0825-y

National Research Council [NRC]. (1994). Nutrient requirements of poultry (9th ed.). Washington, DC: National Academy Press.

Oguz, H., Hadimli, H. H., Kurtoglu, V., & Erganis, O. (2003). Evaluation of humoral immunity of broilers during chronic aflatox in (50 and 100 ppb) and clinoptilolite exposure. Revue de Medecine Veterinary, 154(7), 483-486.

Oueslati, S., Romero-Gonzalez, R., Lasram, S., Garrido Frenich, A., & Martinez Vidal, J. L. (2012). Multi- mycotoxin determination in cereals and derived products marketed in Tunisia using ultra-high performance liquid chromatography coupled to triple quadrupole mass spectrometry. Food Chemistry and Toxicology, 50(7), 2376-2381. doi: 10.1016/j.fct.2012.04.036

Panda, A. K., Reddy, M. R., Rao, S. V. R., Raju, M. V. L. N., & Praharaj, N. K. (2000). Growth, carcass characteristics, immunocompetence and response to Escherichia coli of broilers fed diets with various levels of probiotic. Archiv für Geflügelkunde, 64(4), 152-156

Petchkongkaew, A., Taillandier, P., Gasaluck, P., & Lebrihi, A. (2008). Isolation of Bacillus spp. from Thai fermented soybean (Thua‐nao): screening for aflatoxin B1 and ochratoxin A detoxification. Journal of Applied Microbiology, 104(5), 1495-1502. doi: 10.1111/j.1365-2672.2007.03700.x

Razmgah, N., Mojgani, N., & Torshizi, M. A. T. (2016). Probiotic Potential and Virulence Traits of Bacillus and Lactobacillus Species Isolated from Local Honey Sample in Iran. IOSR Journal of Pharmacy and Biological Sciences, 11(5), 87-95.

Reemers, S. S., Van Leenen, D., Groot Koerkamp, M. J., Van Haarlem, D., Vande Haar, P., Van Eden, W., & Vervelde, L. (2010). Early host responses to avian Influenza avirus are prolonged and enhanced at transcriptional level depending on maturation of the immune system. Journal of Molecular Immunology, 47(9), 1675-1685. doi: 10.1016/j.molimm.2010.03.008

Robens, J. F., & Richard, J. L. (1992). Aflatoxins in animal and human health. A Review. Environmental Contamination and Toxicology, 127, 69-94.

Sangare, L., Zhao, Y., Folly, Y. M. E., Chang, J., Li, J., Selvaraj, J. N., Xing, F., … Liu, Y. (2014). Aflatoxin B1 degradation by a Pseudomonas strain. Toxins, 6 (10), 3028-3040. doi: 10.3390/toxins6103028

Santurio, J. M. (1999). Effect of sodium bentonite on the performance and blood variables of broiler chickens intoxicated with aflatoxin. British Poultry Science, 40(1), 115-119.

Shi, Y. H., Xu, Z. R., Feng, J. L. & Wang, C. Z. (2006). Efficacy of modified montmorillonite nanocomposite to reduce the toxicity of aflatoxin in broiler chick. Animal Feed Science and Technology, 129(1-2), 138-148.

Shotwell, O. L., Hesseltine, C., Stubblefield, R., & Sorenson, W. (1966). Production of aflatoxin on rice. Applied Microbiology, 14(3), 425-428. doi: 10.1016/j.anifeedsci.2005.12.006

Tung, H. T., Wyatt, R. D., Thaxton, P. & Hamilton, P. B. (1973). Impairment of kidney function during aflatoxicosis. Poultry Science Journal, 52 (3), 873- 878.

Vele, M. M., Menten, J. M. F., Morais, S. C. D., & Brainer, M. M. A. (2004). Mixture of formic and propionic acid as additives in broiler feeds. Scientia Agricola Piracicaba, 61(4), 371-375. doi: 10.1590/S0103-90162004000400004

Wu, L., Liao, P., He, L. Q., Ren, W., Yin, J., Duan, J., & Li, T. (2015a). Growth performance, serum biochemical profile, jejunal morphology, and the expression of nutrients transporter genes in deoxynivalenol (DON)-challenged growing pigs. BMC Veterinary Research, 11(144), 144e54. doi:

Wu, L., Liao, P., He, L. Q., Feng, Z., Ren, W., Yin, J., … Yin, Y. (2015b). Dietary L-Arginine supplementation protects weanling pigs from deoxynivalenol-induced toxicity. Toxins, 7(4), 1341e54. doi: 10.3390/toxins7041341

Zhang, Z. F., Cho, J. H., & Kim, I. H. (2013). Effects of Bacillus subtilis UBT- MO2 on growth performance, relative immune organ weight, gas concentration in excreta, and intestinal microbial shedding in broiler chickens. Livestock Science, 155(2-3), 343-347. doi: 10.1016/j.livsci.2013.05.021

Publicado
2020-06-08
Como Citar
Mojgani, N., Razmgah, N., Torshizi, M. A. K., & Sanjabi, M. R. (2020). Effects of three Bacillus specious on hatchability, growth performance and serum biochemistry in Japanese quails fed diet contaminated with Aflatoxin B1. Acta Scientiarum. Animal Sciences, 42(1), e50184. https://doi.org/10.4025/actascianimsci.v42i1.50184
Seção
Nutrição de Não-Ruminantes

0.9
2019CiteScore
 
 
29th percentile
Powered by  Scopus