<b>Correlation between chemical composition, kinetics of fermentation and methane production of eight pasture grasses

  • Mahya Kulivand Razi University
  • Farokh Kafilzadeh Razi University
Keywords: gas production, pasture grasses, methane, In vitro

Abstract

Eight different grasses collected from pastures of the Kermanshah province (Kermanshah, Iran), at mid-vegetative stage were used to study the relationships between their chemical compositions, kinetic parameters of in vitro gas production and rumen methane production. There was a positive correlation (r = 0.62, p < 0.05) between crude protein (CP) content of grasses and total gas production (A) at 96h incubation. Negative correlations were also observed between acid detergent fiber (ADF) content and total gas production (r = -0.60, p < 0.05). Amongst the nutrients, neutral detergent fiber (NDF) and ADF were positively correlated with methane concentration, (r = 0.75 and 0.77, p < 0.01). The methane reduction potential (MRP) was negative for Trachyspermum copticum indicating higher methane production than the control hay for this grass. The MRP of Chamaemelum nobile was more than 25%, indicating plants that reduce methane production more than 20 percent methane in comparison with control actually have ingredients to reduce methane.

 

Downloads

Download data is not yet available.

References

Abdalla, A. L., Louvandini, H., Sallam, S. M. A. H., Silva, I. C. B., Tsai, S. M. & Oliveira Figueira, A. V. (2012). In vitro evaluation, in vivo quantification, and microbial diversity studies of nutritional strategies for reducing enteric methane production. Tropical Animal Health and Production, 44(5), 953-964.

AOAC. (1998). Official Methods of Analysis (15th ed.): Assoc. Off. Anal. Chem., Arlington, VA, U.S.A.

Athanasiadou, S. & Kyriazakis, I. (2004). Plant secondary metabolites: antiparasitic effects and their role in ruminant production systems. Proceedings of the Nutrition Society, 63(4), 631-639.

Beauchemin, K. A., Kreuzer, M., O'Mara, F. & McAllister, T. A. (2008). Nutritional management for enteric methane abatement: a review. Animal Production Science, 48(2), 21-27.

Bodas, R., Prieto, N., García-González, R., Andrés, S., Giráldez, F. J. & López, S. (2012). Manipulation of rumen fermentation and methane production with plant secondary metabolites. Animal Feed Science and Technology, 176(1–4), 78-93.

Carulla, J. E., Kreuzer, M., Machmüller, A. & Hess, H. D. (2005). Supplementation of Acacia mearnsii tannins decreases methanogenesis and urinary nitrogen in forage-fed sheep. Crop and Pasture Science, 56(9), 961-970.

Duncan, D. B. (1955). Multiple range and multiple F tests. Biometrics, 11(1), 1-42.

Fievez, V., Babayemi, O. & Demeyer, D. (2005). Estimation of direct and indirect gas production in syringes: A tool to estimate short chain fatty acid production that requires minimal laboratory facilities. Animal Feed Science and Technology, 123, 197-210.

France, J., Dhanoa, M., Theodorou, M., Lister, S., Davies, D. & Isac, D. (1993). A Model to interpret gas accumulation profiles associated with in vitro degradation of ruminant feeds. Journal of Theoretical Biology, 163(1), 99-111.

García-González, R., López, S., Fernández, M. & González, J. S. (2006). Effects of the addition of some medicinal plants on methane production in a rumen simulating fermenter (RUSITEC). International Congress Series, 1293(0), 172-175. doi: http://dx.doi.org/10.1016/j.ics.2006.01.044

Giger-Reverdin, S., Duvaux-Ponter, C., Sauvant, D., Martin, O., Prado, I. N. & Müller, R. (2002). Intrinsic buffering capacity of feedstuffs. Animal Feed Science and Technology, 96(1), 83-102.

Goel, G. & Makkar, H. P. (2012). Methane mitigation from ruminants using tannins and saponins. Tropical Animal Health and Production, 44(4), 729-739.

Goel, G., Makkar, H. P. & Becker, K. (2008). Effects of Sesbania sesban and Carduus pycnocephalus leaves and Fenugreek Trigonella foenum-graecum L.) seeds and their extracts on partitioning of nutrients from roughage-and concentrate-based feeds to methane. Animal Feed Science and Technology, 147(1), 72-89.

Hariadi, B. T. & Santoso, B. (2010). Evaluation of tropical plants containing tannin on in vitro methanogenesis and fermentation parameters using rumen fluid. Journal of the Science of Food and Agriculture, 90(3), 456-461.

Hartung, E. & Monteny, G.-J. (2000). Methane (CH4) and nitrous oxide (N2O) emissions from animal husbandry. Agrartechnische Forschung, 6(2), 62-69, 115.

Heidary, N. & Kafilzadeh, F. (2012). Detrmining of chemical composition, in vitro digestibility and kinetics of fermentation of whole crop forage from 18 different varieties of oat. Iranian Journal of Animal Science Research, 22(2), 91-106.

Iason, G. (2005). The role of plant secondary metabolites in mammalian herbivory: ecological perspectives. Proceedings of the Nutrition Society, 64(1), 123-131.

Jayanegara, A., Leiber, F. & Kreuzer, M. (2012). Meta analysis of the relationship between dietary tannin level and methane formation in ruminants from in vivo and in vitro experiments. Journal of Animal Physiology and Animal Nutrition, 96(3), 365-375.

Jayanegara, A., Togtokhbayar, N., Makkar, H. P. S. & Becker, K. (2009). Tannins determined by various methods as predictors of methane production reduction potential of plants by in vitro rumen fermentation system. Animal Feed Science and Technology, 150(3), 230-237.

Johnson, K. A. & Johnson, D. E. (1995). Methane emissions from cattle. Journal of Animal Science, 73(8), 2483-2492.

Kessel, J. A. S. & Russell, J. B. (1996). The effect of pH on ruminal methanogenesis. FEMS Microbiology Ecology, 20(4), 205-210.

Lovett, D., Stack, L., Lovell, S., Callan, J., Flynn, B., Hawkins, M. & O’Mara, F. (2005). Manipulating enteric methane emissions and animal performance of late-lactation dairy cows through concentrate supplementation at pasture. Journal of Dairy Science, 88(8), 2836-2842.

Meale, S. J., Chaves, A. V., Baah, J. & McAllister, T. A. (2012). Methane production of different forages in in vitro ruminal fermentation. Asian-Australasian Journal of Animal Sciences, 25(1), 86-91.

Mwenya, B., Santoso, B., Sar, C., Gamo, Y., Kobayashi, T., Arai, I. & Takahashi, J. (2004). Effects of including β1–4 galacto-oligosaccharides, lactic acid bacteria or yeast culture on methanogenesis as well as energy and nitrogen metabolism in sheep. Animal Feed Science and Technology, 115(3), 313-326.

Njidda, A. A. & Nasiru, A. (2010). In vitro gas production and dry matter digestibility of tannin-containing forages of semi-arid region of north-eastern Nigeria. Pakistan Journal of Nutrition, 9(1), 60-66.

Patra, A. K., Kamra, D. N. & Agarwal, N. (2006). Effect of plant extracts on in vitro methanogenesis, enzyme activities and fermentation of feed in rumen liquor of buffalo. Animal Feed Science and Technology, 128(3–4), 276-291. doi: http://dx.doi.org/10.1016/j.anifeedsci.

11.001

Puchala, R., Min, B., Goetsch, A. L. & Sahlu, T. (2005). The effect of a condensed tannin-containing forage on methane emission by goats. Journal of Animal Science, 83(1), 182-186.

SAS. (2004). SAS/STAT User guide, Version 9.1.2. Cary, NC, USA: SAS Institute Inc.

Śliwiński, B. J., Soliva, C. R., Machmüller, A. & Kreuzer, M. (2002). Efficacy of plant extracts rich in secondary constituents to modify rumen fermentation. Animal Feed Science and Technology, 101(1–4), 101-114. doi: http://dx.doi.org/10.1016/S0377-8401(02)00139-6

Soliva, C. R., Zeleke, A. B., Clement, C., Hess, H. D., Fievez, V. & Kreuzer, M. (2008). In vitro screening of various tropical foliages, seeds, fruits and medicinal plants for low methane and high ammonia generating potentials in the rumen. Animal Feed Science and Technology, 147(1), 53-71.

Takahashi, J., Mwenya, B., Santoso, B., Sar, C., Umetsu, K., Kishimoto, T. Hamamoto, O. (2005). Mitigation of methane emission and energy recycling in animal agricultural systems. Asian-Australasian Journal of Animal Sciences, 18(8), 1199.

Tavendale, M. H., Meagher, L. P., Pacheco, D., Walker, N., Attwood, G. T. & Sivakumaran, S. (2005). Methane production from in vitro rumen incubations with Lotus pedunculatus and Medicago sativa, and effects of extractable condensed tannin fractions on methanogenesis. Animal Feed Science and Technology, 123–124, 403-419. doi: http://dx.doi.org/10.1016/j.

anifeedsci.2005.04.037

Theodorou, M. K., Williams, B. A., Dhanoa, M. S., McAllan, A. B. & France, J. (1994). A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Animal Feed Science and Technology, 48(3), 185-197.

Ungerfeld, E., Rust, S. R., Burnett, R. J., Yokoyama, M. T. & Wang, J. (2005). Effects of two lipids on in vitro ruminal methane production. Animal Feed Science and Technology, 119(1), 179-185.

Valero, M. V., Prado, R. M., Zawadski, F., Eiras, C. E., Madrona, G. S. & Prado, I. N. (2014). Propolis and essential oils additives in the diets improved animal performance and feed efficiency of bulls finished in feedlot. Acta Scientiarum.Animal Sciences, 32(4), 419-426.

Van Soest, P. J., Robertson, J. B. & Lewis, B. A. (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74(10), 3583-3597. doi: 10.3168/jds.S0022-0302(91)78551-2

Wanapat, M., Kongmun, P., Poungchompu, O., Cherdthong, A., Khejornsart, P., Pilajun, R. & Kaenpakdee, S. (2012). Effects of plants containing secondary compounds and plant oils on rumen fermentation and ecology. Tropical Animal Health and Production, 44(3), 399-405.

Zeitz, J., Bucher, S., Zhou, X., Meile, L., Kreuzer, M. & Soliva, C. (2013). Inhibitory effects of saturated fatty acids on methane production by methanogenic Archaea. Journal of Animal and Feed Science, 22(1), 44-49.

Published
2015-02-06
How to Cite
Kulivand, M., & Kafilzadeh, F. (2015). <b&gt;Correlation between chemical composition, kinetics of fermentation and methane production of eight pasture grasses. Acta Scientiarum. Animal Sciences, 37(1), 9-14. https://doi.org/10.4025/actascianimsci.v37i1.24336
Section
Pasture and forage utilization

0.9
2019CiteScore
 
 
29th percentile
Powered by  Scopus