Commercial and non-commercial pectinase and cellulase on the enzymatic hydrolysis efficacy of rice husk and Tifton 85 hay
Abstract
The aim of this study was to evaluate the action of commercial and non-commercial cellulase and pectinase on rice husk and Tifton 85 hay hydrolyses. The hydrolysis kinetics of the substrates with commercial cellulase and pectinase were evaluated and the hydrolysis at different temperature and agitation conditions was maximized using experimental design. The combined use of commercial and non-commercial enzymes under optimized conditions was evaluated. The pre-treatment of the residues was also investigated by milling and different concentrations of NaOH. Finally, the effect of the hydrolysis on the bromatological composition of the residues was evaluated. The best hydrolysis times of rice husk and Tifton 85 hay were 10 and 12h for commercial cellulase, 12 and 14h for non-commercial cellulase, 10 and 14h for commercial pectinase and 16 and 20h for non-commercial pectinase, respectively. The highest hydrolysis values were obtained using commercial cellulase with 1:50 (w:v enzyme:water) dilution rate, at 45ºC and 300 rpm agitation for both substrates, reaching 20.6% maximum percentage for Tifton 85 hay and 11.6% for rice husk. The combined use of commercial enzymes did not increase hydrolysis percentage. The pre-treatment using 7.5% NaOH and 0.5 mm grain size significantly increased the rice husk and Tifton 85 hay hydrolyses (60-80%), either using commercial cellulase or pectinase enzymes. The use of non-commercial enzymes provided 18-30% hydrolysis obtained from commercial ones. Bromatological analyzes indicated a reduction in neutral detergent fiber and acid detergent fiber content for rice husk and Tifton 85 hay when using pectinases and commercial cellulases.
Downloads
References
Association Official Analytical Chemist [AOAC]. (2005). Official Methods of Analysis (18th ed.). Gaitherburg, MD: AOAC International.
Azizi-Shotorkhoft, A., Mohammadabadi, T., Motamedi, H., Chaji, M., & Fazaeli, H. (2016). Isolation and identification of termite gut symbiotic bacteria with lignocellulose-degrading potential, and their effects on the nutritive value for ruminants of some by-products. Animal Feed Science and Technology, 221, 234-242. doi: 10.1016/j.anifeedsci.2016.04.016.
Bailey, M. J., Biely, P., & Poutanen, K. (1992). Interlaboratory testing of methods for assay of xylanase activity. Journal of Biotechnology, 23(3), 257-270. doi: 10.1016/0168-1656(92)90074-J.
Borszcz, V., Boscato, T. R. P., Antunes, A., Zeni, J., Backes, G. T., & Valduga, E. (2017). Recovery of Pectinase Obtained by Solid-State Cultivation of Agro-Industrial Residues. Industrial Biotechnology, 13(3), 141-148. doi: 10.1089/ind.2017.0005.
Brijwani, K., Oberoi, H. S., & Vadlani, P. V. (2010). Production of a cellulolytic enzyme system in mixed-culture solid-state fermentation of soybean hulls supplemented with wheat bran. Process Biochemistry, 45(1), 120-128. doi: 10.1016/j.procbio.2009.08.015.
Castro, A. M., & Pereira Júnior, N. (2010). Produção, propriedades e aplicação de celulases na hidrólise de resíduos agroindustriais. Química Nova, 33(1), 181-188. doi: 10.1590/S0100-40422010000100031.
Eibinger, M., Bubner, P., Ganner, T., Plank, H., & Nidetzky, B. (2014). Surface structural dynamics of enzymatic cellulose degradation, revealed by combined kinetic and atomic force microscopy studies. Federation of European Biochemical Societies Journal, 281(1), 275-290. doi: 10.1111/febs.12594.
Ghose, T. K. (1987). Measurement of cellulase activities. Pure and Applied Chemistry, 59(2), 257-268. doi: 10.1007/s12010-007-9064-0.
Gupta, V. K., Kubicek, C. P., Berrin, J.-G., Wilson, D. W., Couturier, M., Berlin, A., ... Ezeji, T. (2016). Fungal enzymes for bio-products from sustainable and waste biomass. Trends in Biochemical Sciences, 41(7), 633-645. doi: 10.1016/j.tibs.2016.
Han, X., Guo, Y., Liu, X., Xia, Q., & Wang, Y. (2019). Catalytic conversion of lignocellulosic biomass into hydrocarbons: a mini review. Catalysis Today, 319, 2-13. doi: 10.1016/j.cattod.2018.05.013.
Hu, J., Jing, Y., Zhang, Q., Guo, J., & Lee, D.-J. (2017). Enzyme hydrolysis kinetics of micro-grinded maize straws. Bioresource Technology, 240, 177-180. doi: 10.1016/j.biortech.2017.02.078.
Hultin, H. O., Sun, B., & Bulger, J. (1966). Pectin methyl esterases of the banana. Purification and properties. Journal of Food Science, 31(3), 320-327. doi: 10.1111/j.1365-2621.1966.tb00500.x.
Isikgor, F. H., & Becer, C. R. (2015). Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Polymer Chemistry, 6(25), 4497-4559. doi: 10.1039/C5PY00263J.
Kumar, A. K., & Sharma, S. (2017). Recent updates on different methods of pretreatment of lignocellulosic feedstocks: a review. Bioresources and Bioprocessing, 4(7), 1-19. doi: 10.1186/s40643-017-0137-9.
Liu, J., Lu, J., & Cui, Z. (2011). Enzymatic hydrolysis of cellulose in a membrane bioreactor: assessment of operating conditions. Bioprocess and Biosystems Engineering, 34(5), 525-532. doi: 10.1007/s00449-010-0501-z.
Martos, M. A., Zubreski, E. R., Combina, M., Garro, O. A., & Hours, R. A. (2013). Isolation of a yeast strain able to produce a polygalacturonase with maceration activity of cassava roots. Food Science and Technology, 33(2), 332-338. doi: 10.1590/S0101-20612013005000047.
Menegol, D., Scholl, A. L., Fontana, R. C., Dillon, A. J. P., & Camassola, M. (2014). Potential of a Penicillium echinulatum enzymatic complex produced in either submerged or solid-state cultures for enzymatic hydrolysis of elephant grass. Fuel, 133, 232-240.
Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31(3), 426-428.
Pitt, D. (1988). Pectin lyase from Phoma medicaginis var. pinodella. Methods in Enzymology, 161, 350-354.
Sindhu, R., Binod, P., & Pandey, A. (2016). A novel sono-assisted acid pretreatment of chili post harvest residue for bioethanol production. Bioresource Technology, 213, 58-63.
Sousa, N. M., Oliveira, J. S., Silva, D. S., Santos, E. M., Medeiros, A. N., Ramos, J. P. F., & Brito, E. A. (2018). Levels of neutral detergent fiber in diets with forage palm for dairy goats. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 70(5), 1595-1604.
Statsoft Inc. (2008). Statistica for Windows (data analysis software system), version 8.0. Tulsa, OK: Statsoft, Inc.
Sun, S., Sun, S., Cao, X., & Sun, R. (2016). The role of pretreatment in improving the enzymatic hydrolysis of lignocellulosic materials. Bioresource Technology, 199, 49-58.
Takahashi, T., Sato, Y., Ito, K., & Mori, H. (2014). Effect of agitation speed on enzymatic saccharification of dry-pulverized lignocellulosic biomass. Renewable Energy, 62, 754-760.
Van Kuijk, S. J. A., Sonnenberg, A. S. M., Baars, J. J. P., Hendriks, W. H., José, C., Rencoret, J., ... Cone, J. W. (2017). Chemical changes and increased degradability of wheat straw and oak wood chips treated with the white rot fungi Ceriporiopsis subvermispora and Lentinula edodes. Biomass and Bioenergy, 105, 381-391.
Xu, X., Lin, M., Zang, Q., & Shi, S. (2018). Solid state bioconversion of lignocellulosic residues by Inonotus obliquus for production of cellulolytic enzymes and saccharification. Bioresource Technology, 247, 88-95.
Yadav, S. K. (2017). Technological advances and applications of hydrolytic enzymes for valorization of lignocellulosic biomass. Bioresource Technology, 245, 1727-1739.
DECLARATION OF ORIGINALITY AND COPYRIGHTS
- I Declare that current article is original and has not been submitted for publication, in part or in whole, to any other national or international journal.
The copyrights belong exclusively to the authors. Published content is licensed under Creative Commons Attribution 4.0 (CC BY 4.0) guidelines, which allows sharing (copy and distribution of the material in any medium or format) and adaptation (remix, transform, and build upon the material) for any purpose, even commercially, under the terms of attribution.
Read this link for further information on how to use CC BY 4.0 properly.