Nano-selenium and nano-zinc oxide supplementation in syrup on laying area, population size and hsp gene expression of honey bees in hot climate
Abstract
This study was designed to examine the protective effects of nano-selenium and nano-zinc oxide on queen and workers performance under heat stress condition and gene expression of heat shock protein 70 (hsp70) as an index of heat tolerance. Sixty colonies were randomly assigned to five treatments with 12 replicates from June until early September. Sugar syrup (50%) containing no supplement or nano-selenium at levels of 50 and 100 µg L-1 or nano-zinc at levels of 100 and 200 µg L-1 was fed to colonies. Nano-selenium supplementations had no effect, but nano-zinc at level of 100 µg L-1 significantly decreased body malondialdehyde concentration. The highest bee population was seen in nano-zinc at level of 100 µg L-1 and the lowest one in control group. The lowest and the highest body weight, fat and protein deposition was found in group received nano-zinc at level of 100 µg L-1 and control, respectively. The highest gene expression was for group received nano-zinc at level of 100 µg L-1 In group received nano-zinc at level of 100 µg L-1, an increase in hsp70 gene expression was found. In conclusion, nano-zinc oxide at level of 100 µg L-1 could increase queen and worker performance and heat resistance of bees in the hot climate condition.
Downloads
References
Agarwal, A., Virk, G., Ong, C., & Du Plessis, S. S. (2014). Effect of oxidative stress on male reproduction. The World Journal of Men's Health, 32(1), 1-17. doi:10.5534/wjmh.2014.32.1.1
Association of Official Analytical Chemists [AOAC]. (2016). Official Methods of Analysis (20th ed.). Arlington, VA: AOAC International.
Atmowidjojo, A. H., Wheeler, D. E., Erickson, E. H., & Cohen, A. C. (1997). Temperature tolerance and water balance in feral and domestic honey bees, Apis mellifera L. Comparative Biochemistry and Physiology Part A: Physiology, 118(4), 1399-1403.
Bitzer-Quintero, O. K., Dávalos-Marín, A. J., Ortiz, G. G., del Angel Meza, A. R., Torres-Mendoza, B. M., Robles, R. G. & Beas-Zárate, C. (2010). Antioxidant activity of tryptophan in rats under experimental endotoxic shock. Biomedicine & Pharmacotherapy, 64(1), 77-81. doi: 10.1016/j.biopha.2009.07.002
Blazyte-Cereskiene, L., Vaitkevičienė, G., Venskutonytė, S., & Būda, V. (2010). Honey bee foraging in spring oilseed rape crops under high ambient temperature conditions. Zemdirbyste-Agriculture, 97, 61-70.
Boostani, A., Sadeghi, A. A., Mousavi, S. N., Chamani, M., & Kashan, N. (2015). The effects of organic, inorganic, and nano-selenium on blood attributes in broiler chickens exposed to oxidative stress. Acta Scientiae Veterinariae, 43, 1-6.
Burton, G. J., & Jauniaux, E. (2011). Oxidative stress. Best Practice & Research: Clinical Obstetrics & Gynaecology, 25(3), 287-299. doi: 10.1016/j.bpobgyn.2010.10.016
Collins, A. M., Williams, V., & Evans, J. D. (2004). Sperm storage and antioxidative enzyme expression in the honey bee, Apis mellifera. Insect Molecular Biology, 13(2), 141-146. doi: 10.3896/IBRA.1.53.4.02
Esterbauer, H., & Cheeseman, K. (1990). Determination of aldehydic lipid peroxidation products: malonaldehyde and 4-hydroxynoneal. Methods in Enzymology, 186(1), 407-421.
Hladun, K. R., Kaftanoglu, O., Parker, D. R., Tran, K. D., & Trumble, J. T. (2013). Effects of selenium on development, survival, and accumulation in the honeybee (Apis mellifera L.). Environmental Toxicology and Chemistry, 32(11), 2584-2592. doi: 10.1002/etc.2357
Joshi, N. C., & Joshi, P. C. (2010). Foraging behaviour of Apis spp. on apple flowers in a subtropical environment. New York Science Journal, 3(3), 71-76.
Koo, J., Son, T. G., Kim, S. Y., & Lee, K. Y. (2015). Differential responses of Apis mellifera heat shock protein genes to heat shock, flower-thinning formulations, and imidacloprid. Journal of Asia-Pacific Entomology, 18(3), 583-589. doi: 10.1016/j.aspen.2015.06.011
Kovac, H., Käfer, H., Stabentheiner, A., & Costa, C. (2014). Metabolism and upper thermal limits of Apis mellifera carnica and A. m. ligustica. Apidologie, 45(6), 664-677. doi.org/10.1007/s13592-014-0284-3
Lee, S. R. (2018). Critical role of zinc as either an antioxidant or a prooxidant in cellular systems. Oxidative Medicine and Cellular Longevity, 2018, 9156285. doi: 10.1155/2018/9156285
Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods, 25(4), 402-408.
Lourenço, A. P., Mackert, A., Santos Cristino, A., & Simões, Z. L. P. (2008). Validation of reference genes for gene expression studies in the honey bee, Apis mellifera, by quantitative real-time RT-PCR. Apidologie, 39(3), 372-385. doi: 10.1051/apido:2008015
Mariani, E., Mangialasche, F., Feliziani, F. T., Cecchetti, R., Malavolta, M., Bastiani, P. & Jajte, J. (2008). Effects of zinc supplementation on antioxidant enzyme activities in healthy old subjects. Experimental Gerontology, 43(5), 445-451. doi: 10.1016/j.exger.2007.10.012
Marreiro, D. D. N., Cruz, K. J. C., Morais, J. B. S., Beserra, J. B., Severo, J. S., & De Oliveira, A. R. S. (2017). Zinc and oxidative stress: current mechanisms. Antioxidants, 6(2), 24. doi: 10.3390/antiox6020024
Paynter, E., Millar, A. H., Welch, M., Baer-Imhoof, B., Cao, D., & Baer, B. (2017). Insights into the molecular basis of long-term storage and survival of sperm in the honeybee (Apis mellifera). Scientific Reports, 7(1), 1-9. doi:10.1038/srep40236
Rastgoo, S., & Sadeghi, A. A. (2015). Effect of Nano-selenium on Plasma Antioxidant status and Reproductive system function of Female Rats exposed to Oxidative Stress Induced by Doxorubicin. Biological Forum, 7(1), 1187-191.
Sahebzadeh, N., & Lau, W. H. (2017). Expression of heat-shock protein genes in Apis mellifera meda (Hymenoptera: Apidae) after exposure to monoterpenoids and infestation by Varroa destructor mites (Acari: Varroidae). European Journal of Entomology, 114, 195.
Sahu, S., Dandapat, J., & Mohanty, N. (2015). Foliar supplementation of zinc modulates growth and antioxidant defense system of tasar silkworm Antheraea mylitta. Journal of Entomology and Zoology Studies, 3, 25-35.
Skalickova, S., Milosavljevic, V., Cihalova, K., Horky, P., Richtera, L., & Adam, V. (2016). Perspective of selenium nanoparticles as a nutrition supplement. Nutrition, 33(1), 83-90. doi: 10.1016/j. nut
Stabentheiner, A., Kovac, H., & Brodschneider, R. (2010). Honeybee colony thermoregulation–regulatory mechanisms and contribution of individuals in dependence on age, location and thermal stress. PLoS One, 5(1), e8967.
Statistical Analysis System [SAS]. (2010). SAS/Stat User Guide: Version 9.1. Cary, NC: SAS Institute Inc.
Suji, G., & Sivakami, S. (2008). Malondialdehyde, a lipid-derived aldehyde alters the reactivity of Cys34 and the esterase activity of serum albumin. Toxicology in Vitro, 22(3), 618-624.
Tamer, L., Sucu, N., Polat, G., Ercan, B., Aytacoglu, B., Yücebilgiç, G. & Atik, U. (2002). Decreased serum total antioxidant status and erythrocyte-reduced glutathione levels are associated with increased serum malondialdehyde in atherosclerotic patients. Archives of Medical Research, 33(3), 257-260.
Tarpy, D. R., & Olivarez Junior, R. (2014). Measuring sperm viability over time in honey bee queens to determine patterns in stored-sperm and queen longevity. Journal of Apicultural Research, 53(4), 493-495.
Tasaki, E., Kobayashi, K., Matsuura, K., & Iuchi, Y. (2017). An efficient antioxidant system in a long-lived termite queen. PLoS One, 12(1), e0167412. doi: 10.1371/journal.pone.0167412
Zhang, G., Zhang, W., Cui, X., & Xu, B. (2015). Zinc nutrition increases the antioxidant defenses of honey bees. Entomologia Experimentalis et Applicata, 156(3), 201-210. doi: 10.1111/eea.12342
DECLARATION OF ORIGINALITY AND COPYRIGHTS
- I Declare that current article is original and has not been submitted for publication, in part or in whole, to any other national or international journal.
The copyrights belong exclusively to the authors. Published content is licensed under Creative Commons Attribution 4.0 (CC BY 4.0) guidelines, which allows sharing (copy and distribution of the material in any medium or format) and adaptation (remix, transform, and build upon the material) for any purpose, even commercially, under the terms of attribution.
Read this link for further information on how to use CC BY 4.0 properly.