The effect of various heat-treatment methods on colostrum quality, health and performance of dairy calves

  • Saeid Hesami Islamic Azad University
  • Amir-Davar Foroozandeh Shahraki Islamic Azad University
  • Amir Zakian Lorestan University
  • Gholamreza Ghalamkari Islamic Azad University
Keywords: IgG; growth; health; Holstein calf; heat-treating; suckling period.

Abstract

To investigate the effect of feeding heat-treated colostrum at different duration on the health and performance, 48 Holstein calves were enrolled randomly into four treatment groups before first feeding and consumed untreated colostrum (H0, n = 12), heat-treated colostrum at 60ºC for 30 min. (H30, n = 12), heat-treated colostrum at 60ºC for 60 min. (H60, n = 12) and heat-treated colostrum at 60ºC for 90 min. (H90, n = 12). Blood samples were collected for analyses of IgG and protein profile at 0, 6, and 24h of age. The colostrum sample from treated and untreated batches and feces sample from each calf also were taken. The results showed heat-treatment of colostrum at 60ºC for 60 (p = 0.03) and 90 min. (p = 0.01) reduced total bacterial count, while colostral IgG concentration maintained up to 60 min. Serum total protein (p = 0.02), IgG concentrations (p = 0.03), and apparent efficiency of IgG absorption (p = 0.02) were significantly greater at 6 and 24h in calves that were fed heat-treated colostrum (H90) compared to calves fed unheated colostrum (H0). General health status of calves that were received heat-treated colostrum was better and the prevalence of diarrhea-induced pathogens was lower than calves were fed unheated colostrum. In conclusion, the consumption of heat-treated colostrum had a positive effect on health, growth characteristics, and performance of calves during the suckling period.

Downloads

Download data is not yet available.

References

Acres, S. D. (1985). Enterotoxigenic Escherichia coli infections in newborn calves: A review. Journal of Dairy Science, 68(1), 229-256. doi: 10.3168/jds.S0022-0302(85)80814-6

Arguello, A., Castro, N., & Capote, J. (2005). Short communication: evaluation of a color method for testing immunoglobulin G concentration in goat colostrum. Journal of Dairy Science, 88(5), 1752-1754. doi: 10.3168/jds.S0022-0302(05)72849-6

Arthington, J. D., Cattell, M. B., & Quigley, J. D. (2000). Effect of dietary IgG source (colostrum, serum, or milk-derived supplement) on the efficiency of Ig absorption in newborn Holstein calves. Journal of Dairy Science, 83(7), 1463-1467. doi: 10.3168/jds.S0022-0302(00)75018-1

Blum, J. W., & Hammon, H. (2000). Colostrum effects on the gastrointestinal tract, and on nutritional, endocrine and metabolic parameters in neonatal calves. Livestock Production Science, 66(2), 151-159. doi: 10.1016/S0301-6226(00)00222-0

Constable, P. D., Hincheliff, K. W., Done, S. & Gruenberg, W. (2016). Veterinary medicine: a textbook of the disease of cattle, horses, sheep, pigs and goats (11th ed.). Philadelphia, PA: Saunders Elsevier.

Corley, L. D., Staley, T. E., Bush, L. J., & Jones, E. W. (1977). Influence of colostrum on transepithelial movement of Escherichia coli O55. Journal of Dairy Science, 60(9), 1416-1421. doi: 10.3168/jds.S0022-0302(77)84046-0

Crouch, C. F., Oliver, S., Hearle, D. C., Buckley, A., Chapman, A. J., & Francis, M. J. (2000). Lactogenic immunity following vaccination of cattle with bovine coronavirus. Vaccine, 19(2-3), 189-196. doi: 10.1016/S0264-410x(00)00177-8

deWit, J. N., & Klarenbeek, G. (1984). Effects of various heat treatments on structure and solubility of whey proteins. Journal of Dairy Science, 67(11), 2701-2710. doi: 10.3168/jds.S0022-0302(84)81628-8

Donahue, M., Godden, S. M., Bey, R., Wells, S., Oakes, J. M., Sreevatsan, S., … Fetrow, J. (2012). Heat treatment of colostrum on commercial dairy farms decreases colostrum microbial counts while maintaining colostrum immunoglobulin G concentrations. Journal of Dairy Science, 95(5), 2697-2702. doi: 10.3168/jds.2011-5220

Doyle, M. P., Glass, K. A., Beery, J. T., Garcia, G. A., Pollard, D. J., & Schultz, R. D. (1987). Survival of Listeria monocytogenes in milk during high-temperature, short-time pasteurization. Applied Environmental Microbiology, 53(7), 1433-1438. Recovered from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC203888/pdf/aem00124-0047.pdf

Edmonson, A. J., Lean, I. J., Weaver, L., Farver, T., & Webster, G. (1989). Development of body condition scoring chart. Journal of Dairy Science, 72(1), 68-78. doi: 10.3168/jds.S0022-0302(89)79081-0

Elizondo-Salazar, J. A., & Heinrichs, A. J. (2009). Feeding heat-treated colostrum to neonatal dairy heifers: effects on growth characteristics and blood parameters. Journal of Dairy Science, 92(7), 3265-3273. doi: 10.3168/jds.2008-1667

Elizondo-Salazar, J. A., Jones, C. M., & Heinrichs, A. J. (2010). Evaluation of calf milk pasteurization systems on 6 Pennsylvania dairy farms. Journal of Dairy Science, 93(11), 5509-5513. doi: 10.3168/jds.2010-3460

Elsohaby, I., & Keefe, G. P. (2015). Preliminary validation of a calf-side test for diagnosis of failure of transfer of passive immunity in dairy calves. Journal of Dairy Science, 98(7), 4754-4761. doi: 10.3168/jds.2014-9027

Elsohaby, I., McClure, J. T., Waite, L. A., Cameron, M., Heider, L. C., & Keefe, G. P. (2019). Using serum and plasma samples to assess failure of transfer of passive immunity in dairy calves. Journal of Dairy Science, 102(1), 567-577. doi: 10.3168/jds.2018-15070

English, E. A., Hopkins, B. A., Stroud, J. S., Davidson, S., Smith, G., Brownie, C., … Whitlow, W. (2007). Journal of Dairy Science, 90(11), 5276-5281. doi: 10.3168/jds.2007-0361

Faber, S. N., Faber, N. E., McCauley, T. C., & Ax, R. L. (2005). Case study: effects of colostrum ingestion on lactational performance. Applied Animal Scientist, 21, 420-425. Recovered from https://www.gardsbyiglu.se/pdf/coloquick_vetenskaplig-studie.pdf

Farber, J. M., Sanders, G. W., & Malcolm, S. A. (1988). The presence of Listeria spp. in raw milk in Ontario. Canadian Journal of Microbiology, 34(2), 95-100. doi: 10.1139/m88-020

Foley, J. A., & Otterby, D. E. (1978). Avilability, storage, treatment, composition, and feeding value of surplus colostrum: A review. Journal of Dairy Science, 61(8), 1033-1060. doi: 10.3168/jds.S0022-0302(78)83686-8

Fox, P. F., & McSweeney, P. L. H. (1998). Dairy chemistry and biochemistry (1st ed.). London, UK: Blackie Academic and Professional.

Gelsinser, S. L., Jones, C. M., & Heinrichs, A. J. (2015). Efeect of colostrum heat treatment and bacterial population on immunoglobulin G absorption and health of neonatal calves. Journal of Dairy Science, 98(7), 4640-4645. doi: 10.3168/jds.2014-8790

Godden, S. (2008). Colostrum management for dairy calves. The Veterinary Clinics of North America: Food Animal Practice, 24(1), 19-39. doi: 10.1016/j.cvfa.2007.10.005

Godden, S. M., Lombard, J. E., & Woolums, A. R. (2019). Colostrum management for dairy calves. The Veterinary Clinics of North America: Food Animal Practice, 35(3), 535-556. doi: 10.1016/j.cvfa.2019.07.005

Godden, S. M., McMartin, S., Feirtag, J., Stabel, J., Bey, R., Goyal, S., … Chester-Jones, H. (2006). Heat treatment of bovine colostrums II. Effects of heating duration on pathogen viability and immunoglobulin G. Journal of Dairy Science, 89(9), 3476-3483. doi: 10.3168/jds.S0022-0302(06)72386-4

Houser, B. A., Donaldson, S. C., Kehoe, S. I., Heinrichs, A. J., & Jayarao, B. M. (2008). A survey of bacteriological quality and the occurrence of salmonella in raw bovine colostrum. Food-borne pathogens and disease, 5(6), 583-585. doi: 10.1089/fpd.2008.0141

Indyk, H. E., Williams, J. W., & Patel, H. A. (2008). Analysis of denaturation of bovine IgG by heat and high pressure using an optical biosensor. International Dairy Journal, 18(4), 359-366. doi: 10.1016/j.idairyj.2007.10.004

James, R. E., Polan, C. E., & Cummins, K. A. (1981). Influence of administered indigenous microorganisms on uptake of [iodine-125] gamma-globulin in vivo by intestinal segments of neonatal calves. Journal of Dairy Science, 64(1), 52-61. doi: 10.3168/jds.S0022-0302(81)82528-3

Johnson, J. L., Godden, S., Molitor, T., Ames, T., & Hagman, D. (2007). Effects of feeding heat-treated colostrum on passive transfer of immune and nutritional parameters in neonatal dairy calves. Journal of Dairy Science, 90(11), 5189-5198. doi: 10.3168/jds.2007-0219

Kent-Dennis, C. (2014). Effects of heat-treatment of colostrum on the development of calves in the neonatal and pre-weaned periods (Dissertation of Master of Science). The Alberta State University, Edmonton.

Klein, D., Kern, A., Lapan, G., Benetka, V., Möstl, K., Hassl, A., & Baumgartner, W. (2009). Evaulation of rapid assays for the detection of bovine coronavirus, rotavirus A and Cryptosporidium parvum in faecal samples of calves. Veterinary Journal, 182(3), 484-486. doi: 10.1016/j.tvjl.2008.07.016

Kolkman, I., Opsomer, G., Aerts, S., Hoflack, G., Laevens, H., & Lips, D. (2010). Analysis of body measurments of newborn purebred Belgian Blue calves. Animals, 4(5), 661-671. doi: 10.1017/S1751731109991558

Larson, B. L., Heary, H. L., & Devery, J. E. (1980). Immunoglobulin production and transport by the mammary gland. Journal of Dairy Science, 63(4), 665-671. doi: 10.3168/jds.S0022-0302(80)82988-2

Larson, L. L., Owen, F. G., Albright, J. L., Appleman, R. D., & Muller, L. D. (1977). Guidelines toward more uniformity in measuring and reporting calf experimental data. Journal of Dairy Science, 60(6), 989-991. doi: 10.3168/jds.S0022-0302(77)83975-1

Lovett, J., Francis, D. W., & Hunt, J. M. (1983). Isolation of Campylobacter jejuni from raw milk. Applied Environmental Microbiology, 46, 459-462.

Maunsell, F. P., Morin, D. E., & Constable, P. D. (1998). Effects of the mastitis on the volume and composition of colostrum produced by Holstein cows. Journal of Dairy Science, 81(5), 1291-1299. doi: 10.3168/jds.S0022-0302(98)75691-7

McGuirk, S. M., & Collins, M. (2004). Managing the productoin, storage and delivery of colostrum. Veterinary Clinics of North America: Food Animal Practice, 20(3), 593-603. doi: 10.1016/j.cvfa.2004.06.005

McMartin, S., Godden, S. M., Metzger, L., Feirtag, J., Bey, R., Stabel, J., … Chester-Jones, H. (2006). Heat treatment of bovine colostrums I. Effects of temperature on viscosity and immunoglobulin G level. Journal of Dairy Science, 89(6), 2110-2118. doi: 10.3168/jds.S0022-0302(06)72281-0

Moazeni, M., Rasooli, A., Nouri, M., Ghorbanpoor, M. & Mosavari, N. (2017). Effect of feeding heat treated colostrum on absorption of immunoglobulin G and serum total protein in neonatal dairy calves. Journal of Veterinary Research, 72(2), 165-171. doi: 10.22059/JVR.2017.62623

Morrill, K. M., Conrad, E., Lago, A., Campbell, J., Quigley, J. & Tyler, H. (2012). Nationwide evaluation of quality and composition of colostrums on dairy farms in the United States. Journal of Dairy Science, 95(7), 3997-4005. doi: 10.3168/jds.2011-5174

Pelegrine, D. H. G., & Gasparetto, C. A. (2005). Whey proteins solubility as function of temperature and pH. LWT Food Science Technology, 38(1), 77-80. doi: 10.1016/j.lwt.2004.03.013

Quigley, J. D., III., & Drewry, J. J. (1998). Nutrient and immunity transfer from cow to calf pre- and postcalving. Journal of Dairy Science, 81(10), 2779-2790. doi: 10.3168/jds.S0022-0302(98)75836-9

Rafiei, M., Ghoorchi, T., Toghdory, A., Moazeni, M., & Khalili, M. (2019). Effect of feeding heat-treated and unheated colostrum on immunoglobulin G absorption, health and performance of neonatal Holstein dairy calves. Acta Scientiarum Animal Sciences, 41(1), e45533. doi: 10.4025/actascianimsci.v41i1.45533

Rebelein, T. W. (2010). The effect of heat treatment on microbiological qualities of bovine colostrum, passive immune transfer of neonatal calves, and future animal performance (Dissertation in Veterinary Medicine for the degree of Doctorate). The Munchen University, Munchen.

Statistical Analysis System [SAS]. (2015). MedCalc Statistical Software version 14.8.1. Cary, NC: SAS institute Inc.

Stabel, J. R., & Goff, J. P. (2004). Efficacy of immunologic assays for the detection of Johne’s disease in dairy cows fed additional energy during the periparturient period. Journal of Veterinary Diagnostic Investigation, 16(5), 412–420. doi: 10.1177/104063870401600507

Staley, T. E., & Bush, L. J. (1985). Receptor mechanisms of the neonatal intestine and their relationship to immunoglobulin absorption and disease. Journal of Dairy Science, 68(1), 184-205. doi: 10.3168/jds.S0022-0302(85)80812-2

Steele, M. L., McNab, W. B., Poppe, C., Griffiths, M. W., Chen, S., Degrandis, S., … Odumeru, J. (1997). Survey of Ontario bulk tank raw milk for food-borne pathogens. Journal of Food Protein, 60(11), 1341-1346. doi: 10.4315/0362-028X-60.11.1341

Stott, G. H., & Fellah, A. (1983). Colostral immunoglobulin absorption linearly related to concentration for calves. Journal of Dairy Science, 66(6), 1319-1328. doi: 10.3168/jds.S0022-0302(83)81941-9

Streeter, R. N., Hoffsis, G. F., Bech-Nielson, S., Shulaw, W. P., & Rings, D. M. (1995). Isolation of mycobacterium paratuberculosis from colostrum and milk of subclinicaly infected cows. American Journal of Veterinary Research, 56(10), 1322-1324. PMID: 8928949

Tacoma, R., Gelsinger, S. L., Lam, Y. W., Scuderi, R. A., Ebenstein, D. B., Heinrichs, A. J., & Greenwood, S. L. (2017). Exploration of the bovine colostrum proteome and effects of heat treatment time on colostrum protein profile. Journal of Dairy Science, 100(11), 9392-9401. doi: 10.3168/jds.2017-13211

Topel, A. (2004). Chemie und physik der milch: naturstoff – rohstoff – lebensmittel. Hamburg, DE: Verlag GmbH & Co.

Vermeer, A. W., & Norde, W. (2000). The thermal stability of immunoglobulin: unfolding and aggregation of a multi-domain protein. Biophysic Journal, 78(1), 394-404. doi: 10.1016/S0006-3495(00)76602-1

Walz, P. H., Mullaney, T. P., Render, J. A., Walker, R. D., Mosser, T., & Baker, J. C. (1997). Otitis media in preweaned Holstein dairy calves in Michigan due to Mycoplasma Bovis. Journal of Veterinary Diagnostic Investigation, 9(3), 250-254. doi: 10.1177/104063879700900305

Wells, S. J., Dargatz, D. A., & Ott, S. L. (1996). Factors associated with mortality to 21 days of life in dairy heifers in the United States. Preventive Veterinary Medicine, 29(1), 9-19. doi: 10.1016/S0167-5877(96)01061-6

Wheeler, T. T., Hodgkinson, A. J., Prosser, C. G., & Davis, S. R. (2007). Immune components of colostrum and milk-A historical perspective. Journal of Mammary Gland Biology and Neoplasia, 12(4), 237-247. doi: 10.1007/s10911-007-9051-7

Windeyer, M. C., Leslie, K. E., Godden, S. M., Hodgins, D. C., Lissemore, K. D., & LeBlanc, S. J. (2014). Factors associated with morbidity, mortality, and growth of dairy heifer calves up to 3 months of age. Preventive Veterinary Medicine, 113(2), 231-240. doi: 10.1016/j.prevetmed.2013.10.019

Yang, M., Zou, Y., Wu, Z. H., Li, S. L., & Cao, Z. J. (2015). Colostrum quality affects immune system establishment and intestinal development of neonatal calves. Journal of Dairy Science, 98(10), 7153-7163. doi:10.3168/jds.2014-9238

Zakian, A., Nouri, M., Rassoli, A., Ghorbanpoor, M., Constable, P. D., & Mohammad-Sadegh, M. (2018). Evaluation of 5 methods for diagnosing failure of passive transfer in 160 Holstein calves. Journal of Veterinary Clinical Pathology, 47(2), 275-283. doi: 10.1111/vcp.12603

Published
2020-11-06
How to Cite
Hesami, S., Shahraki, A.-D. F., Zakian, A., & Ghalamkari, G. (2020). The effect of various heat-treatment methods on colostrum quality, health and performance of dairy calves. Acta Scientiarum. Animal Sciences, 43(1), e49844. https://doi.org/10.4025/actascianimsci.v43i1.49844
Section
Ruminant Nutrition

0.9
2019CiteScore
 
 
29th percentile
Powered by  Scopus