Effect of replacing alfalfa hay with Leucaena leucocephala (L. Leucocephala) leaves on in vitro gas production, digestibility and in situ degradability in buffalo
Abstract
. This study was performed to investigate the effect of replacing alfalfa hay by L. leucocephala leaves in proportions of 25, 50 and 100% on in vitro gas production (GP) parameter, digestibility and in situ degradability in buffalo. Results showed that the volume of GP at 2 to 12 hours after incubation was significantly affected by replacing alfalfa hay with L. leucocephala leaves. In vitro digestibility of organic matter (OMD) differed significantly between treatment as it declined by increasing the alfalfa hay substitution rate from 25 to 100%. The microbial crude protein (MCP) differed significantly between treatments and was the greatest of 589 and 599 mg g-1 of dry matter (DM) when L. leucocephala leaves replaced alfalfa hay at 25 and 50%. The in vitro digestibility of DM (IVDMD) increased significantly at 50% L. leucocephala replacement rate. Moreover, substituting alfalfa hay by L. leucocephala had a significant effect on the in situ degradability parameters. The insoluble but potentially degradable fraction (B) and potential of degradability (A+B) significantly increased for treatment contain 50% L. leucocephala leaves. The effective degradability (ED) was significantly different between dietary treatments and was the greatest when alfalfa hay was replaced by 25 and 50% L. leucocephala. In conclusion, L. leucocephala leaves can substitute 25 to 50% of dietary alfalfa hay in buffalo rations without effect on rumen efficiency.
Downloads
References
Agricultural and Food Research Council [AFRC]. (1993). Energy and protein requirements of ruminants. Wallingford, GB: CAB International.
Alabi, D. A., & Alausa, A. A. (2006). Evaluation of the mineral nutrients and organic food contents of the seeds of Lablab purpureus, Leucaena leucocephala and Mucuna utilis for domestic consumption and industrial utilization. World Journal of Agricultural Sciences, 2(1), 115-118.
Alqaisi, O., Hemme, T., Latacz-Lohmann, U., & Susenbeth, A. (2014). Evaluation of food industry by-products as feed in semi-arid dairy farming systems: the case of Jordan. Sustainability Science, 9(3), 361-377. doi: 10.1007/s11625-013-0240-6
Alqaisi, O., Moraes, L. E., Ndambi, O. A., & Williams, R. B. (2019). Optimal dairy feed input selection under alternative feeds availability and relative prices. Information Processing in Agriculture, 6(4), 438-453. doi: 10.1016/j.inpa.2019.03.004
Angaji, L., Souri, M., & Moeini, M. M. (2011). Deactivation of tannins in raisin stalk by polyethylene glycol-600: Effect on degradation and gas production in vitro. African Journal of Biotechnology, 10(21), 4478-4483.
Association of Official Analytical Chemists [AOAC]. (1998). Official methods of analysis of AOAC international (16th ed.). Gaithersburg, MD: AOAC International.
Barros-Rodríguez, M. A., Solorio-Sánchez, F. J., Sandoval-Castro, C. A., Klieve, A., Rojas-Herrera, R. A., Briceño-Poot, E. G., & Ku-Vera, J. C. (2015). Rumen function in vivo and in vitro in sheep fed Leucaena leucocephala. Tropical Animal Health and Production, 47(4), 757-764. doi: 10.1007/s11250-015-0790-y
Beauchemin, K. A., McGinn, S. M., Martinez, T. F., & McAllister, T. A. (2007). Use of condensed tannin extract from quebracho trees to reduce methane emissions from cattle. Journal of Animal Science, 85(8), 1990-1996. doi: 10.2527/jas.2006-686
Blümmel, M., Steingaβ, H., & Becker, K. (1997). The relationship between in vitro gas production, in vitro microbial biomass yield and 15N incorporation and its implications for the prediction of voluntary feed intake of roughages. British Journal of Nutrition, 77(6), 911-921. doi: 10.1079/BJN19970089
Chaji, M., Direkvandi, E., & Salem, A. Z. M. (2020). Ensiling of Conocarpus erectus tree leaves with molasses, exogenous enzyme and Lactobacillus plantarum impacts on ruminal sheep biogases production and fermentation. Agroforestry Systems, 94(1), 1611-1623. doi: 10.1007/s10457-019-00436-x
Choct, M. (1997). Feed non-starch polysaccharides: chemical structures and nutritional significance. Feed Milling International, 191, 13-26.
Clavero, T., & Razz, R. (2003). The performance of goats browsing Leucaena leucocephala in the semi arid areas of Northwest Venezuela. Revista Científica de Veterinária, 13(6), 460-463.
Direkvandi, E., Mohammadabadi, T., Chaji, M., Elghandour, M. M., Barbabosa-Pleigo, A., & Salem, A. Z. M. (2020). Effect of sulfuric acid and molasses on the chemical composition, ruminal fermentation, and digestibility of silage of Conocarpus erectus L. tree leaves and branches. Agroforestry Systems, 94(4), 1601-1609. doi: 10.1007/s10457-020-00495-5
Esfahani, S. N., Chaji, M., Mohammadabadi, T., & Bojarpour, M. (2016). The investigation of digestion and fermentation of diets containing different parts of subabul tree (Leucaena leucocephala). Journal of Animal Production, 18(1), 39-49. doi: 10.22059/JAP.2016.54271
Frutos, P., Hervás, G., Giráldez, F. J., & Mantecón, A. R. (2004). Review. Tannins and ruminant nutrition. Spanish Journal of Agricultural Research, 2(2), 191-202. doi: 10.5424/sjar/2004022-73
Garcia, G. W., Ferguson, T. U., Neckles, F. A., & Archibald, K. A. E. (1996). The nutritive value and forage productivity of Leucaena leucocephala. Animal Feed Science and Technology, 60(1-2), 29-41. doi: 10.1016/0377-8401(95)00922-1
Getachew, G., Makkar, H. P. S., & Becker, K. (2002). Tropical browses: contents of phenolic compounds, in vitro gas production and stoichiometric relationship between short chain fatty acid and in vitro gas production. The Journal of Agricultural Science, 139(3), 341-352. doi: 10.1017/S0021859602002393
Gupta, H. K., & Atreja, P. P. (1999). Influence of feeding increasing levels of leucaena leaf meal on the performance of milch goats and metabolism of mimosine and 3-hydroxy-4 (1H) pyridone. Animal Feed Science and Technology, 78(1-2), 159-167. doi: 10.1016/S0377-8401(98)00263-6
Harrison, M. T., McSweeney, C., Tomkins, N. W., & Eckard, R. J. (2015). Improving greenhouse gas emissions intensities of subtropical and tropical beef farming systems using Leucaena leucocephala. Agricultural Systems, 136, 138-146. doi: 10.1016/j.agsy.2015.03.003
Islam, M., Nahar, T. N., & Islam, M. R. (1995). Productivity and nutritive value of Leucaena leucocephala for ruminant nutrition - review. Asian-Australasian Journal of Animal Sciences, 8(3), 213-217. doi: 10.5713/ajas.1995.213
Kang, S., Wanapat, M., Pakdee, P., Pilajun, R., & Cherdthong, A. (2012). Effects of energy level and Leucaena leucocephala leaf meal as a protein source on rumen fermentation efficiency and digestibility in swamp buffalo. Animal Feed Science and Technology, 174(3-4), 131-139. doi: 10.1016/j.anifeedsci.2012.03.007
Khazaal, K., Boza, J., & Ørskov, E. R. (1994). Assessment of phenolics-related antinutritive effects in Mediterranean browse: a comparison between the use of the in vitro gas production technique with or without insoluble polyvinylpolypyrrolidone or nylon bag. Animal Feed Science and Technology, 49(1-2), 133-149. doi: 10.1016/0377-8401(94)90087-6
Lu, C. D., & Jorgensen, N. A. (1987). Alfalfa saponins affect site and extent of nutrient digestion in ruminants. Journal of Nutrition, 117(5), 919-927. doi: 10.1093/jn/117.5.919
Makkar, H. P. S. (2000). Quantification of tannins in tree foliage. A laboratory manual for the FAO/IAEA Co-ordinated research project on ‘Use of nuclear and related techniques to develop simple tannin assays for predicting and improving the safety and efficiency of feeding ruminants on tanniniferous tree foliage’. Vienna, AT: FAO/IAEA.
McAllister, T. A., Bae, H. D., Jones, G. A., & Cheng, K. J. (1994). Microbial attachment and feed digestion in the rumen. Journal of Animal Science, 72(11), 3004-3018. doi: 10.2527/1994.72113004x
McSweeney, C. S., Palmer, B., McNeill, D. M., & Krause, D. O. (2001). Microbial interactions with tannins: nutritional consequences for ruminants. Animal Feed Science and Technology, 91(1-2), 83-93. doi: 10.1016/S0377-8401(01)00232-2
Menke, K. H., & Steingass, H. (1988). Estimation of energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Animal Research and Development, 28, 7-55.
Menke, K. H., Raab, L., Salewski, A., Steingass, H., Fritz, D., & Schneider, W. (1979). The estimation of the digestibility and metabolizable energy content of ruminant feedingstuffs from the gas production when they are incubated with rumen liquor in vitro. The Journal of Agricultural Science, 93(1), 217-222. doi: 10.1017/S0021859600086305
Molan, A. L., Attwood, G. T., Min, B. R., & McNabb, W. C. (2001). The effect of condensed tannins from Lotus pedunculatus and Lotus corniculatus on the growth of proteolytic rumen bacteria in vitro and their possible mode of action. Canadian Journal of Microbiology, 47(7), 626-633. doi: 10.1139/w01-060
Mondal, G., Walli, T. K., & Patra, A. K. (2008). In vitro and in sacco ruminal protein degradability of common Indian feed ingredients. Livestock Research for Rural Development, 20(4), 63.
National Research Council [NRC]. (2001). Nutrient requirements of dairy cattle (7th ed., rev.). Washington, DC: National Academies Press.
Norton, B. W., & Poppi, D. P. (1995). Composition and nutritional attributes of pasture legumes. In J. P. F. D'Mello & C. Devendra (Eds.), Tropical legumes in animal nutrition (p. 23-47). Wallingford, GB: CAB International.
O’Donovan, L., & Brooker, J. D. (2001). Effect of hydrolysable and condensed tannins on growth, morphology and metabolism of Streptococcus gallolyticus (S. caprinus) and Streptococcus bovis. Microbiology, 147(Part 4), 1025-1033. doi: 10.1099/00221287-147-4-1025
Ørskov, E. R., & McDonald, I. (1979). The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. The Journal of Agricultural Science, 92(2), 499-503. doi: 10.1017/S0021859600063048
Paengkoum, P. (2010). Effects of neem (Azadirachta indica) and Leucaena (Leucaena leucocephala) fodders on digestibility, rumen fermentation and nitrogen balance of goats fed corn silage. Journal of Animal and Veterinary Advances, 9(5), 883-886. doi: 10.3923/javaa.2010.883.886
Reed, J. D., Soller, H., & Woodward, A. (1990). Fodder tree and straw diets for sheep: intake, growth, digestibility and the effects of phenolics on nitrogen utilisation. Animal Feed Science and Technology, 30(1-2), 39-50. doi: 10.1016/0377-8401(90)90050-I
Robertson, J. B., & Van Soest, P. J. (1980). The detergent system of analysis and its application to human foods. In W. P. T. James & O. Theander (Eds.), The analysis of dietary fiber in food (p. 123-158). New York, NY: Marcel Dekker.
Sabu, A., Augur, C., Swati, C., & Pandey, A. (2006). Tannase production by Lactobacillus sp. ASR-S1 under solid-state fermentation. Process Biochemistry, 41(3), 575-580. doi: 10.1016/j.procbio.2005.05.011
Salem, A. Z., Zhou, C.-S., Tan, Z.-L., Mellado, M., Salazar, M. C., Elghandopur, M. M., & Odongo, N. E. (2013). In vitro ruminal gas production kinetics of four fodder trees ensiled with or without molasses and urea. Journal of Integrative Agriculture, 12(7), 1234-1242. doi: 10.1016/S2095-3119(13)60438-4
Sallam, S. M. A. H., Bueno, I. C. S., Godoy, P. B., Nozella, E. F., Vitti, D. M. S. S., & Abdalla, A. L. (2010). Ruminal fermentation and tannins bioactivity of some browses using a semi-automated gas production technique. Tropical and Subtropical Agroecosystems, 12(1), 1-10.
Shahriari, Z., Mohammadabadi, T., Vakili, S. T., Chaji, M., & Sari, M. (2017). Effect of replacing alfalfa with subabul (Leucaena leucocephala) pod on digestibility, in vitro fermentation and in situ degradability in cow and buffalo. Journal of Animal Production Research, 6(3), 63-72. doi: 10.22124/AR.2017.2366
Soltan, Y. A., Morsy, A. S., Sallam, S. M. A., Louvandini, H., & Abdalla, A. L. (2012). Comparative in vitro evaluation of forage legumes (prosopis, acacia, atriplex, and leucaena) on ruminal fermentation and methanogenesis. Journal of Animal and Feed Sciences, 21(4), 759-772. doi: 10.22358/jafs/66148/2012
Statistical Analysis System [SAS]. (2008). SAS/STAT 9.2 user’s guide. Cary, NC: SAS Institute Inc.
Tilley, J. M. A., & Terry, R. A. (1963). A two‐stage technique for the in vitro digestion of forage crops. Grass and Forage Science, 18(2), 104-111. doi: 10.1111/j.1365-2494.1963.tb00335.x
Van Soest, P. J., Robertson, J. B., & Lewis, B. A. (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74(10), 3583-3597. doi: 10.3168/jds.S0022-0302(91)78551-2
Wanapat, M. (2000). Rumen manipulation to increase the efficient use of local feed resources and productivity of ruminants in the tropics. Asian-Australasian Journal of Animal Sciences, 13, 59-67.
DECLARATION OF ORIGINALITY AND COPYRIGHTS
- I Declare that current article is original and has not been submitted for publication, in part or in whole, to any other national or international journal.
The copyrights belong exclusively to the authors. Published content is licensed under Creative Commons Attribution 4.0 (CC BY 4.0) guidelines, which allows sharing (copy and distribution of the material in any medium or format) and adaptation (remix, transform, and build upon the material) for any purpose, even commercially, under the terms of attribution.
Read this link for further information on how to use CC BY 4.0 properly.