Preliminary evaluation of the use of bacteria isolated from the digestive tract of shrimp Litopenaeus vannamei as a source to accelerate the process of formation and development of bioflocs

  • Danyela Carla Elias Soares Universidade Federal do Ceará https://orcid.org/0000-0003-4059-9794
  • Jade Oliveira Abreu Universidade Federal do Ceará
  • Jéssica Lucinda Saldanha da Silva Universidade Federal do Ceará
  • Oscarina Viana de Sousa Universidade Federal do Ceará
Keywords: aquaculture; probiotic; biofloc induction; microbial domestication.

Abstract

This study aims at investigating to follow the formation and development of biofloc aggregates in a system with the introduction of an in vitro selected bacterial consortium (Bacillus thuringiensis, Bacillus sp., Staphylococcus cohnii) in order to induce fast formation of biofloc and to compare it to the development of spontaneous formation biofloc. Two experimental groups were evaluated for biofloc formation, SFT and IFT. The first refers to spontaneous (conventional) formation of the flocs and the second to induced formation (IFT), achieved through the consortium of potentially inducing bacteria. Both treatments presented a constant increase of bioflocs, however, in the IFT treatment, the microbial aggregates were larger and more uniform. By the end of the experiment, we verified that the aggregates formed in the IFT showed higher volume and lower sedimentation rate in comparison to the spontaneously formed ones. The results show that domestication in microbial communities is efficient as related to bioflocs, reducing instability during its formation and development.

Downloads

Download data is not yet available.

References

Abdallah, F. B., Chaieb, K., Zmantar, T., Kallel, H., & Bakhrouf, A. (2009). Adherence assays and slime production of Vibrio alginolyticus and Vibrio parahaemolyticus. Brazilian Journal of Microbiology, 40(2), 394-398. doi: 10.1590/S1517-83822009000200033

Antony, S. P., Singh, I. S. B., Jose, R. M., Kumar, P. R. A., & Philip, R. (2011). Antimicrobial peptide gene expression in tiger shrimp, Penaeus monodon in response to gram-positive bacterial probionts and white spot virus challenge. Aquaculture, 316(1-4), 6-12. doi: 10.1016/j.aquaculture.2011.03.025

Avnimelech, Y. (1999). Carbon/nitrogen ratio as a control element in aquaculture systems. Aquaculture, 176(3-4), 227-235. doi: 10.1016/S0044-8486(99)00085-X

Avnimelech, Y. (2007). Feeding with microbial flocs by tilapia in minimal discharge bio-flocs technology ponds. Aquaculture, 26(1-4), 140-147. doi: 10.1016/j.aquaculture.2006.11.025

Avnimelech, Y. (2009). Biofloc technology – a practical guide book. Baton Rouge, LA: The World Aquaculture Society.

Avnimelech, Y. (2012). Biofloc technology – a practical guide book (2nd ed.). Baton Rouge, LA: The World Aquaculture Society.

Azim, M. E., & Little, D. C. (2008). The biofloc technology (BFT) in indoor tanks: water quality, biofloc composition, and growth and welfare of Nile tilapia (Oreochromis niloticus). Aquaculture, 283(1-4), 29-35. doi: 10.1016/j.aquaculture.2008.06.036

Burford, M. A., Thompson, P. J., McIntosh, R. P., Bauman, R. H., & Pearson, D. C. (2004). The contribution of flocculated material to shrimp (Litopenaeus vannamei) nutrition in a high-intensity, zero-exchange system. Aquaculture, 232(1-4), 525-537. doi: 10.1016/S0044-8486(03)00541-6

Cai, Y., Suyanandana, P., Saman, P., & Benno, Y. (1999). Classification and characterization of lactic acid bacteria isolated from the intestines of common carp and freshwater prawns. The Journal of General and Applied Microbiology, 45(4), 177-184. doi: 10.2323/jgam.45.177

Clinical and Laboratory Standards Institute [CLSI]. (2010). Performance standards for antimicrobial susceptibility testing (Twentieth informational supplement. M100-S19, v. 29, n. 3). Wayne, PA: CLSI.

Christensen, G. D., Simpson, W. A., Bisno, A. L., & Beachey, E. H. (1982). Adherence of slime-producing strains of Staphylococcus epidermidis to smooth surfaces. Infection and Immunity, 37(1), 318-326. doi: 10.1128/IAI.37.1.318-326.1982

Crab, R., Avnimelech, Y., Defoirdt, T., Bossier, P., & Verstraete, W. (2007). Nitrogen removal techniques in aquaculture for a sustainable production. Aquaculture, 270(1-4), 1-14. doi: 10.1016/j.aquaculture.2007.05.006

Crab, R., Lambert, A., Defoirdt, T., Bossier, P., & Verstraete, W. (2010). The application of bioflocs technology to protect brine shrimp (Artemia franciscana) from pathogenic Vibrio harveyi. Journal of Applied Microbiology, 109(5), 1643-1649. doi: 10.1111/j.1365-2672.2010.04791.x

Emerenciano, M., Gaxiola, G., & Cuzon, G. (2013). Biofloc technology (BFT): a review for aquaculture application and animal food industry. In M. D. Matovic (Ed.), Biomass now - cultivation and utilization (p. 301-328). Rijeka, HR: IntechOpen.

Fóes, G., Gaona, C. A. P., & Poersch, L. H. (2012). Cultivo em bioflocos (BFT) é eficaz na produção intensiva de camarões. Visão Agrícola, 11, 28-32.

Freeman, D. J., Falkiner, F. R., & Keane, C. T. (1989). New method for detecting slime production by coagulase negative staphylococci. Journal of Clinical Pathology, 42(8), 872-874. doi: 10.1136/jcp.42.8.872

Furniss, A. L., Lee, J. V., & Donovan, T. J. (1978). The vibrios. London, GB: Public Health Laboratory Service.

Gaona, C. A. P., Almeida, M. S., Viau, V., Poersch, L. H., & Wasielesky Jr, W. (2017). Effect of different total suspended solids levels on a Litopenaeus vannamei (Boone, 1931) BFT culture system during biofloc formation. Aquaculture Research, 48(3), 1070-1079. doi: 10.1111/are.12949

Gregory, J. (1997). The density of particle aggregates. Water Science and Technology, 36(4), 1-13. doi: 10.1016/S0273-1223(97)00452-6

Jiao, Y., Wickett, N. J., Ayyampalayam, S., Chanderbali, A. S., Landherr, L., Ralph, P. E., ... dePamphilis, C. W. (2011). Ancestral polyploidy in seed plants and angiosperms. Nature, 473(7345), 97-100. doi: 10.1038/nature09916

Krummenauer, D., Peixoto, S., Cavalli, R. O., Poersch, L. H., & Wasielesky Jr, W. (2011). Superintensive culture of white shrimp, Litopenaeus vannamei, in a biofloc technology system in southern Brazil at different stocking densities. Journal of the World Aquaculture Society, 42(5), 726-733. doi: 10.1111/j.1749-7345.2011.00507.x

Martínez‐Córdova, L. R., Emerenciano, M., Miranda-Baeza, A., & Martínez‐Porchas, M. (2015). Microbial‐based systems for aquaculture of fish and shrimp: an updated review. Aquaculture, 7(2), 131-148. doi: 10.1111/raq.12058

Martínez‐Córdova, L. R., Martínez-Porchas, M., Emerenciano, M. G. C., Miranda-Baeza, A., & Gollas-Galván, T. (2016). From microbes to fish the next revolution in food production. Critical Reviews in Biotechnology, 37(3), 287-295. doi: 10.3109/07388551.2016.1144043

McIntosh, D., Samocha, T. M., Jones, E. R., Lawrence, A. L., McKee, D. A., Horowitz, S., & Horowitz, A. (2000). The effect of bacterial supplement on the high-density culturing of Litopenaeus vannamei with low-protein diet in outdoor tank system and no water exchange. Aquacultural Engineering, 21(3),

-227. doi: 10.1016/S0144-8609(99)00030-8

Ray, A. J., Lewis, B. L., Browdy, C. L., & Leffler, J. W. (2010). Suspended solids removal to improve shrimp (Litopenaeus vannamei) production and an evaluation of a plant-based feed in minimal-exchange, superintensive culture systems. Aquaculture, 299(1-4), 89-98. doi: 10.1016/j.aquaculture.2009.11.021

Rodrigues, D. P., Ribeiro, R. V., Alves, R. M., & Hofer, E. (1993). Evaluation of virulence factors in environmental isolates of Vibrio species. Memórias do Instituto Oswaldo Cruz, 88(4), 589-592. doi: 10.1590/S0074-02761993000400016

Rust, L., Messing, C. R., & Iglewski, B. H. (1994). Elastase assays. Methods in Enzymology, 235, 554-562. doi: 10.1016/0076-6879(94)35170-8

Samocha, T. M., Wilkenfeld, J. S., Morris, T. C., Correia, E. S., & Hanson, T. (2010). Intensive raceways without water exchange analyzed for White shrimp culture. Global Aquaculture Advocate, 13, 22-24.

Tansel, B. (2018). Morphology, composition and aggregation mechanisms of soft bioflocs in marine snow and activated sludge: a comparative review. Journal of Environmental Management, 205, 231-243. doi: 10.1016/j.jenvman.2017.09.082

Zokaeifar, H., Babaei, N., Saad, C. R., Kamarudin, M. S., Sijam, K., & Balcazar, J. L. (2013). Administration of Bacillus subtilis strains in the rearing water enhances the water quality, growth performance, immune response, and resistance against Vibrio harveyi infection in juvenile white shrimp, Litopenaeus vannamei. Fish & Shellfish Immunology, 36(1), 68-74. doi: 10.1016/j.fsi.2013.10.007

Zouboulis, A. I., & Avranas, A. (2000). Treatment of oil-in-water emulsions by coagulation and dissolved-air flotation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 172(1-3), 153-161. doi: 10.1016/S0927-7757(00)00561-6

Published
2021-04-26
How to Cite
Soares, D. C. E., Abreu, J. O., Silva, J. L. S. da, & Sousa, O. V. de. (2021). Preliminary evaluation of the use of bacteria isolated from the digestive tract of shrimp Litopenaeus vannamei as a source to accelerate the process of formation and development of bioflocs. Acta Scientiarum. Animal Sciences, 43(1), e52219. https://doi.org/10.4025/actascianimsci.v43i1.52219
Section
Aquaculture

0.9
2019CiteScore
 
 
29th percentile
Powered by  Scopus