Figuil limestone as a calcium source for Japanese quail: effects on growth, carcass, egg production, and blood biochemical parameters

  • Francois Djitie Kouatcho University of Ngaoundere https://orcid.org/0000-0003-1389-9716
  • Emile Miégoué University of Dschang
  • Hippolyte Mekuiko Watsop University of Ngaoundéré
  • Raïssa Nai University of Ngaoundéré
  • Claudia Panzaru Iaşi University of Life Sciences
  • Razvan Radu-Rusu Iaşi University of Life Sciences
  • Eliza Smiz University of Life Science
  • Nicolas Njintang Yanou University of Ngaoundéré
Keywords: mineral supplement; shellfish; calcium carbonate; growth; laying; Coturnix japonica.

Abstract

The poultry feed industry in Cameroon faces high costs due to its dependence on imported ingredients like shellfish meal, a key calcium source. To promote animal feed self-sufficiency and reduce imports, this study evaluates Figuil limestone as a local alternative. The effects of replacing shellfish meal with limestone meal on Japanese quail (Coturnix japonica) were assessed in terms of growth, carcass traits, and reproduction. A total of 300-day-old quails were divided into 15 groups. Five diets with increasing substitution levels of shell meal by limestone meal (0, 25, 50, 75, 100%) were tested, with each treatment replicated three times. At 7 weeks, six birds per batch were sampled for biochemical and carcass analysis. Results showed that feed intake increased with limestone inclusion, while growth, carcass, and organ traits remained unaffected. A 50% substitution level improved the laying rate (24.9±2.2%) compared to the control (20.0±6.9%), though control birds had heavier eggs (12.1±0.1 g). Limestone also increased Haugh Units and edible content but reduced shell thickness. Biochemical parameters showed no significant differences. The study concluded that Figuil limestone can be an effective substitute for shellfish meal in quail diets, with 50% replacement level being the most effective during the early laying period.

Downloads

Download data is not yet available.

References

Abou-Kassem, D. E., El-Kholy, M. S., Alagawany, M., Laudadio V., Tufarelli V. (2019). Age and sex-related differences in performance, carcass traits, hemato-biochemical parameters, and meat quality in Japanese quails. Poultry Science, 98(4), 1684-1691. https://doi.org/10.3382/ps/pey543

Alaimo, K., Chilton, M., Jones, S. J. (2020). Food insecurity, hunger, and malnutrition. In B. P. Marriott, D. F. Birt,V. A. Stallings, & A. A. Yates (Eds.), Present knowledge in nutrition: clinical and applied topics in nutrition (Vol. 2, pp. 311-326). Elsevier. https://doi.org/10.1016/B978-0-12-818460-8.00017-4

Attia, Y. A., Abd El-Hamid, A. E., Ellakany, H. F., Bovera, F., Al-Harthi, M. A. & Ghazaly, S. A. (2013). Growing and laying performance of Japanese quail fed diet supplemented with different concentrations of acetic acid. Italian Journal of Animal Science, 12(37), 222-229. https://doi.org/10.4081/ijas.2013.e37

Attia, Y. A., Al-Harthi, M. A., & Abo El-Maaty, H. M. (2020). Calcium and cholecalciferol levels in late-phase laying hens: effects on productive traits, egg quality, blood biochemistry, and immune responses. Frontiers in Veterinary Science, 7, 1-17. https://doi.org/10.3389/fvets.2020.00389

Bagheri, R., Toghyani, M., Tabatabaei, S. N., Tabeidian, S. A., & Ostadsharif, M. (2022). Growth, physiological, and molecular responses of broiler quail to dietary source, particle size, and choice feeding of calcium. Italian Journal of Animal Science, 21(1), 74-85. https://doi.org/10.1080/1828051X.2021.2017361

Bakst, M. R. (2017). Reproduction in Poultry. In C. G. Scanes, & R. A. Hill (Eds.), Biology of domestic animals (pp. 213-238). CRC Press.

Bonos, E. M., Christaki, E. V., & Paneri, P. C. (2010). Performance and carcass characteristics of Japanese quail as affected by sex or mannan oligosaccharides and calcium propionate. South African Journal of Animal Science, 40(3), 173-184. https://doi.org/10.4314/sajas.v40i3.2

Bozkurt, M., & Küçükyilmaz, K. (2015). The role of boron in poultry nutrition Part II: compositional and mechanical properties of bone and egg quality. World’s Poultry Science Journal, 71(3), 483-492. https://doi.org/10.1017/S0043933915002184

Brandão, P. A., Costa, F. G. P., Silva, J. H. V., Brandão, J. S., Nobre, J. G. S., & Goulart, C. C. (2007). Exigência de cálcio para codornas japonesas (coturnix coturnix japonica) em postura em postura postura. Acta Scientiarum. Animal Sciences, 29(1), 17-21.

Çabuk, M., Eratak S., Alçicek, A., & Bozkurt, M. (2014). Effects of herbal essential oil mixture as a dietary supplement on egg production in quail. Hindawi Publishing Corporation, 2014, 1-4. https://doi.org/10.1155/2014/573470

Cashion, T., Le Manach, F., Zeller, D. & Pauly, D., (2017). Most fish destined for fishmeal production are food-grade fish. Fish and Fisheries, 18(5), 837-844. https://doi.org/10.1111/faf.12209

Ceylan, N., Koca, S., Yavaş, İ, & Çenesiz, A. (2023). Effects of lower dietary calcium and phosphorus on growth performance and bone mineralizatıon of broilers. Journal of the Hellenic Veterinary Medical Society, 74(3), 6063-6072. https://doi.org/10.12681/jhvms.30761

Dale, N. (1994). National research council nutrient requirements of poultry — ninth revised edition (1994). Journal of Applied Poultry Research, 3(1), 101. https://doi.org/10.1093/japr/3.1.101

Deviche P., Hurley L. L., and Bobby F. H., (2011). Avian testicular structure, function, and regulation. In D. O. Norris, & K. H. Lopez (Ed.), Hormones and Reproduction of Vertebrates - Birds (Vol. 4, pp. 27-70). Elsevier. https://doi.org/10.1016/B978-0-12-374929-1.10002-2

Djanabou, M., Djitie, F. K., Njimou, J. R., Lemougna, P. N., Kepdieu, J. M., Radu-Rusu, R. M., & Njintang, N. Y. (2025). Evaluating figuil limestone and shellfish as sustainable calcium sources for poultry nutrition: a comparative study with physicochemical characterization of quail eggshells. Journal of Research in Agriculture and Food Sciences, 2(2), 80-80. https://doi.org/10.5455/JRAFS.20250116113851

Djitie, K. F., Kana, J. R., Ngoula, F., Nana, N. F. C., & Teguia, A. (2015). Effect of crude protein level on growth and carcass in quail (Coturnix sp.) in the finishing phase in the Cameroon Highlands. Livestock Research for Rural Development, 27(8), 155. http://www.lrrd.org/lrrd27/8/koua27155.htm

El-Ghalid, O. A. H. (2009). Exogenous estradiol: blood profile, productive and reproductive performance of female Japanese Quails at different stages of production. Asian Journal of Poultry Science, 3(1), 1-8. https://doi.org/10.3923/ajpsaj.2009.1.8

Garcia, J., Murakami, A. E., Martins, E. N., & Furlan, A. C. (2000). Exigências nutricionais de cálcio e fósforo para codornas japonesas (Coturnix coturnix japonica) em postura. Acta Scientiarum. Animal Science, 22(3), 733-739. https://doi.org/10.4025/actascianimsci.v22i0.3141

Garcia-Casal, M. N. (2006). Carotenoids increase iron absorption from cereal-based food in the human. Nutrition Research, 26(7), 340-344. https://doi.org/10.1016/j.nutres.2006.06.015

Gilani, S., Mereu, A., Li, W., Plumstead, P. W., Angel, R., Wilks, G., & Dersjant-Li, Y. (2022). Global survey of limestone used in poultry diets: calcium content, particle size and solubility. Journal of Applied Animal Nutrition, 10(1), 19-30. https://doi.org/10.3920/JAAN2021.0015

Haugh, H. (1937). A new method for determining the quality of an egg. US Poultry Magazine, 39, 27-49.

Huss, D., Poynter, G., & Lansford, R. (2008). Japanese quail (Coturnix japonica) as a laboratory animal model. Lab Animal, 37, 513-519. https://doi.org/10.1038/laban1108-513

Institut National de la Recherche Agronomique. (1989). L’alimentation des animaux monogastriques: porcs, lapins, volailles. INRA.

Jeke, A., Phiri, C., Chitindingu, K., & Taru, P. (2018). Ethnomedicinal use and pharmacological potential of Japanese quail (Coturnix coturnix japonica) birds` meat and eggs, and its potential implications on wild quail conservation in Zimbabwe: a review. Cogent Food and Agriculture. Informa Healthcare, 4(1), 1-12. https://doi.org/10.1080/23311932.2018.1507305

Kaplan, L. A. & Pesce, A. J. (1996). Interferences in chemical analysis. In: Kaplan L.A., Pesce A.J., editors. Clinical Chemistry-Theory, analysis, and correlation. 2nd edn. St. Louis, USA: The C. V. Mosby Company; 1989. pp. https://doi.org/10.1007/BF02867865

Kayang, B. B., Vignal, A., Inoue-Murayama, M., Mmiva, L., Monvoisin J., Sito, & Minvielle F. (2004). A first génération microsatellite linkage map of the Japanese quail. Animal Genetics 35(3), 195-200. https://doi.org/10.1111/j.1365-2052.2004.01135.x

Klasing, K. C. (2005). Poultry nutrition: a comparative approach. Journal of Applied Poultry Research, 14(2), 426-436. https://doi.org/10.1093/japr/14.2.426

Koutsos, E. A., López, J. C. G., & Klasing, K. C. (2006). Carotenoids from in ovo or dietary sources blunt systemic indices of the inflammatory response in growing chicks (Gallus gallus domesticus). Journal of Nutrition, 136(4), 1027-1031. https://doi.org/10.1093/jn/136.4.1027

Li, X., Zhang, D., & Bryden, W. L. (2017). Calcium and phosphorus metabolism and nutrition of poultry: are current diets formulated in excess? Animal Production Science, 57(11), 2304-2310. https://doi.org/10.1071/AN17389

Mahrose, K. M., Abol-Ela, S., Amin, R. M., & Abou-Kassem, D. E. (2020). Restricted feeding could enhance feed conversion ratio and egg quality of laying japanese quail kept under different stocking densities. Animal Biotechnology, 33(1), 141-149. https://doi.org/10.1080/10495398.2020.1810059

Makinde, O. J., Sekoni, A. A., Babajide, S., Samuel, I. & Ibe, E. (2013). Comparative response of Japanese quails (Coturnix coturnix japonica) fed palm kernel meal and brewer’s dried grain-based diets. International Journal of Agriculture and Biosciences, 2(5), 217-220. http://www.ijagbio.com/pdf-files/volume-2-no-5-2013/217-220.pdf

Mallick, P., Muduli, K., Biswal, J. N., & Pumwa, J. (2020). Broiler poultry feed cost optimization using linear programming technique. Journal of Operations and Strategic Planning, 3(1), 31-57. https://doi.org/10.1177/2516600x19896910

Markos, S., Bereket, B., & Tess, A. (2017). Evaluation of egg quality traits of three indigenous chicken ecotypes kept under farmers’ management conditions. International Journal of Poultry Science, 16(5),180-188. https://doi.org/10.3923/ijps.2017.180.188

Minvielle, F. (2004). The future of Japanese quail for research and production. World’s Poultry Science Journal, 60(4), 500-507. https://doi.org/10.1079/WPS200433

Moura, G. R. S., Reis, R. S., Mendonça, M. O., Salgado, H. R., Abreu, K. S., Madella, G. S., & Lima, M. B. (2020). Substitution of limestone for eggshell powder in the diet of japanese laying quails. Revista Brasileira de Saúde e Produção Animal, 21(1), 1-13. https://doi.org/10.1590/S1519-9940210152020

Narváez-Solarte, W., Rostagno, H. S., Soares, P. R., Silva, M. A., & Uribe Velasquez, L. F. (2005). Nutritional requirements in methionine + cystine for white-egg laying hens during the first cycle of production. International Journal of Poultry Science, 4(12), 965-968. https://doi.org/10.3923/ijps.2005.965.968

Nys, Y., & Le Roy, N. (2018). Calcium homeostasis and eggshell biomineralization in female chicken. In D. Feldman (Ed.), Vitamin D (Vol. 1, pp. 361-382). Elsevier. https://doi.org/10.1016/B978-0-12-809965-0.00022-7

Ouaffai, A., Dahloum, L., Fassih, A., Milagh, M., & Halbouche, M. (2018). Performances de croissance, de ponte et qualité de l’œuf chez la caille Japonaise (Coturnix coturnix japonica). Archivos de Zootecnia, 67(258), 168-176. https://doi.org/10.21071/az.v67i258.3651

Pavlik, A., Lichovnikova, M., & Jelínek, P. (2009). Blood plasma mineral profile and qualitative indicators of the eggshell in laying hens in different housing systems. Acta Veterinaria Brno, 78(3), 419-429. https://doi.org/10.2754/AVB200978030419

Pelicia, K., Garcia, G., Faitarone, A. B. G., Silva, A. P., Berto, D. A., Molino, A. B., & Vercese, F. (2009). Calcium and available phosphorus levels for laying hens in second production cycle. Brazilian Journal of Poultry Science, 11(1), 39-49. https://doi.org/10.1590/S1516-635X2009000100007

Perine, T. P., Marcato, S. M., Furlan, A. C., Grieser, D. D. O., Zancanela, V., Stanquevis, C. E., Benites, M. I. & Euzébio, T. C. (2016). Calcium requirement and vitamin D supplementation in meat-type quail at second stage of growth. Revista Brasileira de Zootecnia, 45(11), 655-660. https://doi.org/10.1590/S1806-92902016001100003

Pizzolante, C. C., Garcia, E. A., Saldanha, E. S. P. B., Laganá, C., Faitarone, A. B. G., Souza, H. B. A., & Pelicia, K. (2007). Beak trimming methods and their effect on the performance and egg quality of Japanese quails (Coturnix japonica) during lay. Brazilian Journal of Poultry Science, 9(1), 17-21. https://doi.org/10.1590/S1516-635X2007000100003

Pourmollaei, F., Ghazaghi, M., Rokouei, M., Bagherzadeh-Kasmani, F., & Mehri, M. (2025). Calcium requirements in growing Japanese quail from 21 to 35 days post-hatch. Poultry Science, 104(2), 1-8. https://doi.org/10.1016/j.psj.2024.104700

Proszkowiec-Weglarz, M., & Angel, R. (2013). Calcium and phosphorus metabolism in broilers: Effect of homeostatic mechanism on calcium and phosphorus digestibility. Journal of Applied Poultry Research, 22(3), 609-627. https://doi.org/10.3382/japr.2012-00743

Radu-Rusu, R. M., Usturoi, M. G., Leahu, A., Amariei, S., Radu-Rusu, C. G., & Vacaru-Opriş, I. (2014). Chemical features, cholesterol, and energy content of table hen eggs from conventional and alternative farming systems. South African Journal of Animal Science, 44(1), 33-42. https://doi.org/10.4314/SAJAS.V44I1.5

Santhi, D., & Kalaikannan, A. (2017). Japanese quail (Coturnix coturnix japonica) meat: characteristics and value addition. World’s Poultry Science Journal, 73(2), 337-344. https://doi.org/10.1017/S004393391700006X

Siyadati, S.-A., Mirzaei-Aghsaghali, A., & Ghazvinian, K. (2011). Effect of varying ratio of energy and protein on live performance and visceral organs of male Japanese quail. Annals of Biological Research, 2(2), 137-144. Retrieved from http://scholarsresearchlibrary.com/archive.html (link does not give access to the material)

Souza, D. S. , Calixto, L. F. L., Lemos, M. J., Silva Filho, C. A., Pinho, T. P., Machado, C. A., Melo, I. A., &Togashi, C. K. (2016). Quail performance and egg quality at the end of production fed with varying levels of calcium. Semina:Ciencias Agrarias, 37(4, Supl 1), 2395-2406. https://doi.org/10.5433/1679-0359.2016v37n4Supl1p2395

Sultana F., Islam M. S., M. D., & Abdur Rahman H. (2007). Effect of dietary calcium sources and levels on egg production and eggshell quality of japanese quail. International Journal of Poultry Science, 6(2), 131-136. https://doi.org/10.3923/ijps.2007.131.136

Toghyani, S., Dashti, G., Roudbari, N., Rouzbehani, S., & Monajemi, R. (2013). Lithium carbonate inducing disorders in three parameters of rat sperm. Advanced Biomedical Research, 2(1), 55. https://doi.org/10.4103/2277-9175.115793

Vieira, D. V. G., Barreto, S. L. T., Valeriano, M. H., Jesus, L. F. D., Silva, L. F. F., Mencalha, R., Barbosa, K. S., Mendes, R. K. V., Cassuce, M. R., & Melo, T. S. (2012). Calcium and phosphorus requirements for Japanese quails aged between 26 and 38 weeks. Revista Brasileira de Saúde e Produção Animal, 13(1), 204-213.

Walk, C. L., Wang, Z., Wang, S., Sorbara, J. O. B., & Zhang, J. (2022). Determination of the standardized ileal digestible calcium requirement of male Arbor Acres Plus broilers from day 25 to 42 post-hatch. Poultry Science, 101(11), 1-9. https://doi.org/10.1016/j.psj.2022.102146

Wang, G., Kim, W. K., Cline, M. A., & Gilbert, E. R. (2017). Factors affecting adipose tissue development in chickens: a review. Poultry Science, 96(10), 3687-3699. https://doi.org/10.3382/ps/pex184

Williams, K. C. (1992). Some factors affecting albúmen quality with reference to Haugh unit score. Poultry Science, 48(1), 6-16. https://doi.org/10.1079/WPS19920002

Wongdee, K., Rodrat, M., Teerapornpuntakit, J., Krishnamra, N., & Charoenphandhu, N. (2019). Factors inhibiting intestinal calcium absorption: hormones and luminal factors that prevent excessive calcium uptake. The Journal of Physiological Sciences, 69(5), 683-696. https://doi.org/10.1007/s12576-019-00688-3

Published
2025-11-03
How to Cite
Kouatcho, F. D., Miégoué, E., Watsop, H. M., Nai, R., Panzaru, C., Radu-Rusu, R., Smiz, E., & Yanou, N. N. (2025). Figuil limestone as a calcium source for Japanese quail: effects on growth, carcass, egg production, and blood biochemical parameters. Acta Scientiarum. Animal Sciences, 48(1), e71572. https://doi.org/10.4025/actascianimsci.v48i1.71572
Section
Nonruminant Nutrition

0.9
2019CiteScore
 
 
29th percentile
Powered by  Scopus