Barrows and gilts respond differently as experimental models for Escherichia coli challenge during the nursery phase

Keywords: health; disease challenge model; swine.

Abstract

The objectives of this study were to evaluate the effect of Escherichia coli (E. coli) F4 challenge in nursery piglets, and to develop an experimental model to be used in research. Ninety-six weaned piglets were divided in a 2 x 2 factorial design consisting of E. coli challenge (challenged or not challenged) and sex (barrows or gilts). Pig growth performance, fecal score, blood count, intestinal morphometry, and cecal content (microbiological and short-chain fatty acid analysis) data were collected and analyzed. Pigs in the non-challenged treatment had 6% greater average daily gain during day 8-28 (the period in which the health challenge was administered) and 1.2% greater average daily feed intake in over the entire experiment, when compared to challenged pigs. Gilts in the non-challenged group had a higher villus: crypt ratio when compared to piglets in the challenged group. These findings indicate that the pathogen challenge using Escherichia coli F4 strains, especially in gilts, proved to be an effective method to reproduce commercial health challenges in the first two weeks postweaning and may be used in experimental models.

Downloads

Download data is not yet available.

References

Bergam, E. N. (1990). Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiology Review, 70(2), 567-589. https://doi.org/10.1152/physrev.1990.70.2.567

Bontempo, V., Giancamillo, A., Savoini, G., Dell’Orto, V., & Domeneghini, C. (2006). Live yeast dietary supplementation acts upon intestinal morpho-functional aspects and growth in weanling piglets. Animal Feed Science and Technology, 129(3-4), 224-236. https://doi.org/10.1016/j.anifeedsci.2005.12.015

Campbell, J. M., Crenshaw, J. D., & Polo, J (2013). The biological stress of early weaned piglets. Journal of Animal Science and Biotechnology, 4(19), 2-5. https://doi.org/10.1186/2049-1891-4-19

Che, L., Xu, Q., Wu, C., Luo, Y., Huang, X., Zhang, B., Auclair, E., Kiros, T., Fang, Z., Lin, Y., Xu, S., Feng, B., Li, J., & Wu, D. (2017). Effects of dietary live yeast supplementation on growth performance, diarrhoea severity, intestinal permeability and immunological parameters of weaned piglets challenged with enterotoxigenic Escherichia coli K88. British Journal of Nutrition, 118(11), 949-958. https://doi.org/10.1017/s0007114517003051

Chen, Y., Li, D., Dai, Z., Piao, X., Wu, Z., Wang, B., Zhu, Y., & Zeng, Z. (2014). L-methionine supplementation mantains the integrity and barrier function of the small-intestinal mucosa in post-weaning piglets. Springer-Verlag Wien, 46, 1131-1142. https://doi.org/10.1007/s00726-014-1675-5

Davis, M. E., Sears, S. C., Apple, J. K., Maxwell, C. V., & Johnson, Z. B. (2006). Effect of weaning age and commingling after the nursery phase of pigs in a wean-to-finish facility on growth, and humoral and behavioral indicators of well-being. Journal of Animal Science, 84(3), 743–756. https://doi.org/10.2527/2006.843743x

Friendship, R. M., & Henry, S. C. (1992). Intestinal disorders. In Leman, A. D., Straw, B. E., Mangeling, W. L., D’Allaire, S. D., & Taylor, D. J. (Eds.), Diseases of swine (7th ed., p. 222-235). Iowa State University Press.

Fukuda, S., Toh, H., Hase, K., Oshima, K., Nakanishi, Y., Yoshimura, K., Tobe, T., Clarke, J. M., Topping, D. L., Suzuki, T., Taylor, T. D., Itoh, K., Kikuchi, J., Morita, H., Hattori, M., & Ohno, H. (2011). Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature, 469, 543-549. https://doi.org/10.1038/nature09646

Gao, Y., Han, F., Huang, X., Rong, Y., Yi, H., & Wang, Y. (2013). Changes in gut microbial populations, intestinal morphology, expression of tight junction proteins and cytokine production between two pig breeds after challenge with Escherichia coli K88: A comparative study. Journal of Animal Science, 91(12), 5614-5625. https://doi.org/10.2527/jas.2013-6528

Johnson, R. W. (1997). Inhibition of growth by pro-inflammatory cytokines: An integrated view. Journal of Animal Science, 75(5), 1244–1255. https://doi.org/10.2527/1997.7551244x

Kaneko, J. J., Harvey, W. J., & Brus, L. M. (1997). Clinical biochemistry of domestic animals (5th ed.). Academic Press.

Kummer, R., Gonçalves, M. A. D., Lippke, R. T., Marques, B. M. F. P. P., & Mores, J. T. (2009). Fatores que influenciam o desempenho dos leitões na fase de creche. Acta Scientiae Veterinariae, 37(1), 195-209. https://ISSN 1678-0345

Moonens, K., Van den Broeck, I., Okello, E., Pardon, E., De Kerpel, M., Remaut, H., & De Greve, H. (2015). Structural insight in the inhibition of adherence of F4 fimbriae producing enterotoxigenic Escherichia coli by llama single domain antibodies. Veterinary Research, 24(46), 14. https://doi.org/10.1186/s13567-015-0151-x

Oliveira, JR, G. M., Silva, F. C. O., Ferreira, A. S., & Rodrigues, V. V. (2013). Efeitos do desafio sanitário e da suplementação de lisina, metionina, treonina e triptofano em leitões recém desmamados. Revista Eletrônica Nutritime, 10(3), 2408-2427. https://ISSN 1983-9006.

Owusu-Asiedu, A., Nyachoti, C. M., & Marquardt, R. R. (2003). Response of early-weaned pigs to an enterotoxigenic Escherichia coli (K88) challenge when fed diets containing spray-dried porcine plasma or pea protein isolate plus egg yolk antibody, zinc oxide, fumaric acid or antibiotic. Journal of Animal Science, 81(7), 1790-1798. https://doi.org/10.2527/2003.8171790x

Pedersen, K. S., & Toft, N. (2011). Intra- and inter-observer agreement when using a descriptive classification scale for clinical assessment of faecal consistency in growing pigs. Preventive Veterinary Medicine, 98(4), 288–291. https://doi.org/10.1016/j.prevetmed.2010.11.016

Pi, D., Liu, Y., Shi, H., Li, S., Odle, J., Lin, X., Zhu, H., Chen, F., Hou, Y., & Leng, W. (2014). Dietary supplementation of aspartate enhances intestinal integrity and energy status in weanling piglets after lipopolysaccharide challenge. Journal of Nutriotional Biochemistry, 25(4), 456-462. https://doi.org/10.1016/j.jnutbio.2013.12.006

Rodrigues, L. M., Neto, T. O. D., Garbossa, C. A. P., Martins, C. C. D., Garcez, D., Alves, L. K. S., de Abreu, M. L. T., Ferreira, R. A., & Cantarelli, V. D. (2020). Benzoic acid combined with essential oils can be an alternative to the use of antibiotic growth promoters for piglets challenged with E. coli F4. Animals, 10(11), 1978. https://doi.org/10.3390/ani10111978

Santollo, J., Edwards, A. A., Howell, J. A., & Myers, K. E. (2021). Bidirectional effects of estradiol on the control of water intake in female rats. Hormones and Behavior, 133, 104996. https://doi.org/10.1016/j.yhbeh.2021.104996

SAS Institute Inc. (2009). SAS/STAT® 9.2 user’s guide. SAS Institute Inc.

Shen, Y. B., Piao, X. S., Kim, S. W., Wang, L., Liu, P., Yoon, I., & Zhen, Y. G. (2009). Effects of yeast culture supplementation on growth performance, intestinal health and immune response of nursery pigs. Journal of Animal Science, 87(8), 2614-2624. https://doi.org/10.2527/jas.2008-1512

Sørensen, M. T., Vestergaard, E. M., Jensen, S. K., Lauridsen, C., & Højsgaard, S. (2009). Performance and diarrhoea in piglets following weaning at seven weeks of age: Challenge with E. coli O 149 and effect of dietary factors. Livestock Science, 123(2-3), 314-321. https://doi.org/10.1016/j.livsci.2008.12.001

Sugiharto, S., Hedemann, M. S., & Lauridsen, C. (2014). Plasma metabolomic profiles and immune responses of piglets after weaning and challenge with E. coli. Journal of Animal Science and Biotechnology, 5(17). https://doi.org/10.1186/2049-1891-5-17

Tsuchida, S., Maruyama, F., Ogura, Y., Toyoda, A., Hayashi, T., Okuma, M., & Ushida, K. (2017). Genomic characteristics of Bifidobacterium thermacidophilum pig isolates and wild boar isolates reveal the unique presence of a putative mobile genetic element with tetW for pig farm isolates. Frontiers in microbiology, 8(1540). https://doi.org/10.3389/fmicb.2017.01540

Wang, J., Zeng, Y., Wang, S., Liu, H., Zhang, D., Zhang, W., Wang, Y., & Ji, H. (2018). Swine-derived probiotic Lactobacillus plantarum inhibits growth and adhesion of enterotoxigenic Escherichia coli and mediates host defense. Frontiers in Microbiology, 9(1364). https://doi.org/10.3389/fmicb.2018.01364.

Webel, D. M., Finck, B. N., Baker, D. H., & Johnson, R. W. (1997). Time course of increased plasma cytokines, cortisol, and urea nitrogen in pigs following intraperitoneal injection of lipopolysaccharide. Journal of Animal Science, 75, 1514–1520. https://doi.org/10.2527/1997.7561514x

Weiler, U., Claus, R., Schnoebelen-Combes, S., & Louveau, I. (1998). Influence of age and genotype on endocrine parameters and growth performance: A comparative study in wild boars, Meishan and Large White boars. Livestock Production Science, 54(1), 21–31. https://doi.org/10.1016/S0301-6226(97)00165-6

Zhaxi, Y., Meng, X., Wang, W., He, Z., Zhang, X., & Pu, W. (2020). Duan-Nai-An, a yeast probiotic, improves intestinal mucosa integrity and immune function in weaned piglets. Scientific Reports, 10, Article 61279. https://doi.org/10.1038/s41598-020-61279-6

Zhu, Y., González-Ortiz, G., Solá-Oriol, D., López-Colom, P., & Martín-Orúe, S.M. (2018). Screening of the ability of natural feed ingredients commonly used in pig diets to interfere with the attachment of ETEC K88 (F4) to intestinal epithelial cells. Animal Feed Science and Technology, 242, 111-119. https://doi.org/10.1016/j.anifeedsci.2018.06.005

Zlotowski, P., Driemeier, D., & Barcellos, D. E. S. N. (2008). Patogenia das diarreias dos suínos: modelos e exemplos. Acta Scientiae Veterinariae, 36(1), 81-86.

Published
2025-09-25
How to Cite
Oliveira, A. C. R. de, Carnino, B. B., Guimarães, E. B. B., Alves, L. K. S., Lima, T. M. P., Schinckel, A. P., & Garbossa, C. A. P. (2025). Barrows and gilts respond differently as experimental models for Escherichia coli challenge during the nursery phase. Acta Scientiarum. Animal Sciences, 47(1), e71652. https://doi.org/10.4025/actascianimsci.v47i1.71652
Section
Animal Production

Funding data

0.9
2019CiteScore
 
 
29th percentile
Powered by  Scopus