Conservation, fermentation, and nutritional quality of apple pomace silage with moisture-absorbing additives

Apple pomace silage

Keywords: byproducts; dry matter; effluent losses; ruminant nutrition.

Abstract

The objective of this study was to evaluate the use of moisture-absorbing additives for the conservation of apple pomace silage, and the effects on its fermentation and nutritional quality. The dry matter content (DMC) of apple pomace was determined using a microwave oven method, which was tested and compared to the standard oven method to facilitate calculation of the apple pomace quantities required to achieve 350 g kg-1 DMC in the ensiled mass. Five treatments were evaluated in experimental silos: fresh apple pomace (FAP); FAP with ground maize grain; FAP with soybean meal; FAP with wheat bran; and FAP with soybean hulls. A randomized block experimental design was used. Data were analyzed using the R statistical program, adopting a significance level of 0.05. The DMC obtained using the microwave oven method was similar to that obtained with the standard oven method (164.4 and 156.1 g kg-1, respectively). The nutritional composition of the silages varied with additives; soybean meal increased crude protein content, while soybean hulls increased the fiber fraction (p < 0.001). The pH values were below 4.20. The addition of wheat bran resulted in 176.42 g kg-1 of ammoniacal nitrogen, indicating increased proteolysis. The incorporation of moisture-absorbing additives into apple pomace silage reduced gas losses by 20.1% and effluent losses by 65.9% (p < 0.001). Overall, the additives improved fermentation profile and reduced losses, enhancing the silage's nutritional composition.

Downloads

Download data is not yet available.

References

Alarcon-Rojo, A. D., Lucero, V., Carrillo-Lopez, L., & Janacua, H. (2019). Use of apple pomace in animal feed as an antioxidant of meat. South African Journal of Animal Science 49(1), 131-139. https://doi.org/10.4314/sajas.v49i1.15

Araújo, J. A. S., Almeida, J. C. C., Reis, R. A., Carvalho, C. A. B., & Barbero, R. P. (2020). Harvest period and baking industry residue inclusion on production efficiency and chemical composition of tropical grass si-lage. Journal of Cleaner Production, 266, 121953. https://doi.org/10.1016/j.jclepro.2020.121953

Association of Official Analytical Chemists. (2012). Official Methods of Analysis (19th ed.). AOAC

Ávila, C. L. S., & Carvalho, B. F. (2020). Silage fermentation—updates focusing on the performance of micro-organisms. Journal of Applied Microbiology, 128(4), 966-984. https://doi.org/10.1111/jam.14450

Bartel, I., Koszarska, M., Wysocki, K., Kozłowska, M., Szumacher-Strabel, M., Cieslak, A., Wyrwał, B., Szejner, A., Strzałkowska, N., Horbanczuk, J. O., Atanas, G. A., & Jóźwik, A. (2022). Effect of Dried Apple Pomace (DAP) as a Feed Additive on Antioxidant System in the Rumen Fluid. International Journal of Mo-lecular Sciences, 23(18), 10475. https://doi.org/10.3390/ijms231810475

Beigh, Y. A., Ganai, A. M., & Ahmad, H. A. (2015). Utilisation of Apple Pomace as Livetock Feed: A Review. Indian Journal of Small Ruminants, 21(2), 165-179. https://doi.org/10.5958/0973-9718.2015.00054.9

Bernardes, T. F., Reis, R. A., & Moreira, A. L. (2005). Fermentative and microbiological profile of marandu-grass ensiled with citrus pulp pellets. Scientia Agricola, 62(3), 214-220. https://doi.org/10.1590/S0103-90162005000300003

Bolsen, K. K., Lin, C., & Brent, B. E. (1992). Effect of silage additives on the microbial successionand fermen-tation process of alfalfa and corn silages. Journal of Dairy Science, 75(11), 3066-3083. https://doi.org/10.3168/jds.S0022-0302(92)78070-9

Borreani, G., Tabacco, E., Schmidt, R. J., Holmes, B. J., & Muck, R. E. (2017). Silage review: factors affecting dry matter and quality losses in silages. Journal of Dairy Science, 101(5), 3952-3979. https://doi.org/10.3168/jds.2017-13837

Dentinho, M. T. P., Paulos, K., Costa, C., Costa, J., Fialho, L., Cachucho, L., & Portugal, A. P. (2023). Silages of agro-industrial by-products in lamb diets – Effect on growth performance, carcass, meat quality and in vitro methane emissions. Animal Feed Science. Technology, 298, 115603. https://doi.org/10.1016/j.anifeedsci.2023.115603

Detmann, E., Souza, M. A., Valadares Filho, S. C., Queiroz, A. C., Berchielli, T. T., Saliba, E. O. S., Cabral, S., Pina, D. S., Ladeira, M. M., & Azevêdo, J. A. G. (2012). Métodos para análise de alimentos. Suprema.

Driehuis, F., Wilkinson, J. M., Jiang, Y., Ogunade, I., & Adesogan, A. T. (2018) Silage review: animal and hu-man health risks from silage. Journal of Dairy Science, 101(5), 4093-4110. https://doi.org/10.3168/jds.2017-13836

Empresa de Pesquisa Agropecuária e Extensão Rural de Santa Catarina / Centro de Socioeconomia e Plane-jamento Agrícola. (2023). Síntese Anual da Agricultura de Santa Catarina – 2021/2022. Epagri.

Food and Agriculture Organization of the United Nations. (2022). The State of Food and Agriculture. Leverag-ing agricultural automation for transforming agrifood systems. https://doi.org/10.4060/cb9479en

Food and Agriculture Organization of the United Nations. (2024). Crops and livestock products – Apple produc-tion (Statistics Division). https://www.fao.org/faostat/en/#data/QCL

Ferreira, D., Bandeira, D., Zanine, A., Parente, H., Parente, M., Rodrigues, R., Santos, E. M., Lima, A. G., Ri-beiro, M., Pinho, R., Oliveira, J., Santos, F. N., Costa, R., Sousa, F. C., Campos, F., & Olivera-Viciedo, D. (2023). Effects of Adding Agro-Industrial By-Products of Babassu to Guinea Grass Silage. Agriculture, 13(9), 1697. https://doi.org/10.3390/agriculture13091697

Gadulrab, K., Sidoruk, P., Kozłowska, M., Szumacher-Strabel, M., Lechniak, D., Kołodziejski, P., Pytlewski, J., Strzałkowska, N., Horbanczuk, J. O., Józwik, A., Yanza, Y. R., Irawan, A., Patra, A. K., & Cieślak, A. (2023). Effect of Feeding Dried Apple Pomace on Ruminal Fermentation, Methane Emission, and Biohydrogena-tion of Unsaturated Fatty Acids in Dairy Cows. Agriculture, 13(10), 2032. https://doi.org/10.3390/agriculture13102032

Grizotto, R. K., Siqueira, G. R., Campos, A. F., Modesto, R. T., & Resende, F. D. (2020). Fermentative parame-ters and aerobic stability of orange peel silage with pelleted citrus pulp. Revista Brasileira de Zootecnia, 49, e20190265. https://doi.org/10.37496/rbz4920190265

Halmemies-Beauchet-Filleau, A., Rinne, M., Lamminen, M., Mapato, C., Ampapon, T., Wanapat, M., & Va-nhatalo, A. (2018). Review: alternative and novel feeds for ruminants: nutritive value, product quality and environmental aspects. Animal, 12(S2), 295-309. https://doi.org/10.1017/S1751731118002252

Islam, S., Fang, J., Suzuki, H., & Matsuzaki, M. (2014) Postprandial hyperketonemia after feeding of alcoholic fermented apple pomace silage in Suffolk ewes. Journal of Animal Science Advances, 4(5), 845-854.

Jonsson, A. (1991). Growth of Clostridium tyrobutiricum during fermentation and aerobic deterioration of grass silage. (1991). Journal of the Science of Food and Agriculture, 54(4), 557-568. https://doi.org/10.1002/JSFA.2740540407

Kara, K., Guclu, B. K., Baytok, E., Aktug, E., Oguz, F. K., Kamalak, A., & Atalay, A. I. (2018). Investigation in terms of digestive values, silages quality and nutrient content of the using pomegranate pomace in the ensiling of apple pomace with high moisture contents. Journal of Applied Animal Research, 46(1), 1233-1241. https://doi.org/10.1080/09712119.2018.1490300

Kobayashi, H., Nakasato, T., Sakamoto, M., Ohtani, Y., Terada, F., Sakai, K., Ohkuma, M., & Tohno, M. (2017) Clostridium pabulibutyricum sp. nov., a butyric-acid producing organism isolated from high-moisture grass silage. International Journal of Systematic and Evolutionary Microbiology, 67(12), 4974-4978. https://doi.org/10.1099/ijsem.0.002387

Kung, L. Jr, Shaver, R. D., Grant, R. J., & Schmidt, R. J. (2018) Silage review: interpretation of chemical, micro-bial, and organoleptic components of silages. Journal of Dairy Science, 101(5), 4020-4033. https://doi.org/10.3168/jds.2017-13909

McDonald, P. J., Henderson, A. R., & Heron, S. J. E. (1991) The biochemistry of silage (2nd ed.). Chalcombe Pu-blications.

Mota, A. D. S., Rocha Júnior, V. R., Souza, A. S., Reis, S. T., Tomich, T. R., Caldeira, L. A., Menezes, G. C. C., & Costa, M. D. (2011). Perfil de fermentação e perdas na ensilagem de diferentes frações da parte aérea de quatro variedades de mandioca. Revista Brasileira de Zootecnia, 40(7), 1466-1473. https://doi.org/10.1590/S1516-35982011000700010

Nogueira, M. D. S., Araújo, G. G. L., Santos, E. M., Gonzaga Neto, S., Oliveira, J. S., Perazzo, A. F., & Pereira, D. M. (2019). Feed alternatives with cactus forage silage for animal nutrition. International Journal of Agri-culture and Biology, 22(6), 1393-1398. https://doi.org/10.17957/IJAB/15.1213

Pirmohammadi, R., Rouzbehan, Y., Rezayazdi, K., & Zahedifar, M. (2006). Chemical composition, digestibility and in situ degradability of dried and ensiled apple pomace and maize silage. Small Ruminant Research, 66(1-3), 150-155. https://doi.org/10.1016/j.smallrumres.2005.07.054

R Core Team. (2022). R: A language and environment for statistical computing. R Foundation for Statistical Com-puting. https://www.R-project.org/

Ribeiro Filho, H. M. N., Oliveira Junior, L. C. S., & Dias, K. M. (2012). Avaliação nutricional da polpa de maçã como suplementação energética para bovinos. Ciência Rural, 42(9), 1627-1633. https://doi.org/10.1590/S0103-84782012005000065

Silva, D. J., & Queiroz, A. C. (2006). Análise de alimentos: métodos químicos e biológicos (3a ed.). Editora UFV.

Tengerdy, R. P., Weinberg, Z. G., Szakacs, G., Linden, C. J., & Henk, L. L. (1991). Ensiling alfafa with additives of lactic acid bacteria and enzymes. Journal of the Science of Food and Agriculture, 55(2), 215-228. https://doi.org/10.1002/jsfa.2740550207

Tilley, J. M. A., & Terry, R. A. A. (1963). Two stage technique for the “in vitro” digestion of forage crops. Jour-nal of British Grassland Society, 18(2), 104-111. https://doi.org/10.1111/j.1365-2494.1963.tb00335.x

Tosi, H., Schocken-Iturrino, R. P., & Ravazi, J. P. (1982). Presença de clostridium em silagem de milho colhido em diferentes estádios de desenvolvimento. Pesquisa Agropecuária Brasileira, 17(8), 1133-1136.

Ulger, I., Kaliber, M., Ayasan, T., & KÜÇÜK, O. (2018). Chemical composition, organic matter digestibility and energy content of apple pomace silage and its combination with corn plant, sugar beet pulp and pumpkin pulp. South African Journal of Animal Sciences, 48(3), 497-503. https://doi.org/10.4314/sajas.v48i3.10

Zanine, A. M., Santos, E. M., Dórea, J. R. R., Dantas, P. A. S., Silva, T. C., & Pereira, O. G. (2010). Evaluation of elephant grass silage with the addition of cassava scrapings. Revista Brasileira de Zootecnia, 39(12), 2611-2616. https://doi.org/10.1590/S1516-35982010001200008

Published
2025-09-25
How to Cite
Fávaro, V. R., Fonseca Rech, Ângela, Pinto, M. G. L., Zardo, V. F., Mendes, S. D. C., & Passos, J. F. M. dos. (2025). Conservation, fermentation, and nutritional quality of apple pomace silage with moisture-absorbing additives. Acta Scientiarum. Animal Sciences, 47(1), e71897. https://doi.org/10.4025/actascianimsci.v47i1.71897
Section
Animal Production

0.9
2019CiteScore
 
 
29th percentile
Powered by  Scopus