Predicting breeding value of body weight at 6-month age using Artificial Neural Networks in Kermani sheep breed
Resumo
The present study aimed to apply artificial neural networks to predict the breeding values of body weight in 6-month age of Kermani sheep. For this purpose, records of 867 lambs including lamb sex, dam age, birth weight, weaning weight, age at 3-month (3 months old), age at 6-month (6 months old) and body weight at 3 months of age were used. Firstly, genetic parameters of the animals were estimated using ASReml software. The data was then pre-processed for using in MATLAB software. After initial experiments on the appropriate neural network architecture for body weight at 6-month age, two networks were examined. A feed-forward backpropagation multilayer perceptron (MLP) algorithm was used and 70% of all data used as training data, 15% as testing data and 15% as validating data, to prevent over-fitting of the artificial neural network. Results showed that the both networks capable to predict breeding values for body weight at 6 month-age in Kermani sheep. It can be concluded that artificial neural network has a good ability to predict growth traits in Kermani sheep with an acceptable speed and accuracy. Therefore, this network, instead of commonly-used procedures can be used to estimate the breeding values for productive and reproductive traits in domestic animals.
Downloads
Referências
Beale, M. H., Hagan, M. T., & H.B., D. (2004). Neural Network Toolbox User’s Guide. Natick, MA: The Mathwork Inc.
Behzadi, M. R. B., & Aslaminejad, A. A. (2010). A comparison of neural network and nonlinear regression predictions of sheep growth. Journal of Animal and Veterinary Advances, 9(16), 2128-2131. doi: 10.3923/javaa.2010.2128.2131.
Bhattacharya, B., Ghosh, T. K., Duttagupta, R., & Maitra, D. N. (1984). Estimation of body weight in Black Bengal goats from body measurements. Indian Veterinary Journal, 61, 406-408.
Bote, S., & Basu, S. B. (1984). Relationship between body measurements and meat production in Beetal goats. Indian Veterinary Journal, 61, 670-673.
Brethour, J. R. (1994). Estimating marbling score in live cattle from ultrasound images using pattern recognition and neural network procedures. Journal of Animal Science, 72(6), 1425-1432.
Craninx, M., Fievez, V., Vlaeminck, B., & De Baets, B. (2008). Artificial neural network models of the rumen fermentation pattern in dairy cattle. Computers and Electronics in Agriculture, 60(2), 226-238. doi: 10.1016/j.compag.2007.08.005.
Ehret, A., Hochstuhl, D., Gianola, D., & Thaller, G. (2015). Application of neural networks with back-propagation to genome-enabled prediction of complex traits in Holstein-Friesian and German Fleckvieh cattle. Genetics Selection Evolution, 47, 22-25. Doi: 10.1186/s12711-015-0097-5.
Ferreira, R. T., Viana, A. P., Barroso, D. G., Resende, M. D. V., & Amaral Júnior, A. T. (2012). Toona ciliata genotype selection with the use of individual BLUP with repeated measures. Scientia Agricola, 69(3), 210-216.
Gorgulu, O. (2012). Prediction of 305-day milk yield in Brown Swiss cattle using artificial neural networks. South African Journal of Animal Science, 42(3), 280-287.
Grzesiak, W., Lacroix, R., Wójcik, J., & Blaszczyk, P. (2003). A comparison of neural network and multiple regression predictions for 305-day lactation yield using partial lactation records. Canadian Journal of Animal Science, 83(2), 307-310. doi: 10.4141/A02-002.
Kargar, N., Moradishahrbabak, M., Moravej, H., & Rokuei, M. (2006). Genetic estimate of growth and wool traits in kermani sheep. Animal Science Journal, 73, 88-95.
Khodabakhshzadeh, R., Mohammadabadi, M. R., Esmailizadeh, A. K., Shahrebabak, H. M., Bordbar, F., & Namin, S. A. (2016). Identification of point mutations in exon 2 of GDF9 gene in Kermani sheep. Polish Journal ofVveterinary sciences, 19(2), 281-289. doi: 10.1515/pjvs-2016-0035.
Kominakis, A. P., Abas, Z., Maltaris, I., & Rogdakis, E. (2002). A preliminary study of the application of artificial neural networks to prediction of milk yield in dairy sheep. Computers and Electronics in Agriculture, 35(1), 35-48. doi: 10.1016/S0168-1699(02)00051-0.
MATLAB. (2005). User guide - v7.0 [software]. Natick, MA: The MathWorks.
Mohammadabadi, M. R., & Sattayimokhtari, R. (2013). Estimation of (co) variance components of ewe productivity traits in Kermani sheep. Slovak Journal of Animal Science, 46(2), 45-51.
Moradi, H., Joka, I., & Forouzantabar, A. (2015). Modelling and forecasting gold price using GMDH neural network. Indian Journal of Fundamental and Applied Life Sciences, 5(1), 30-41.
Njubi, D. M., Wakhungu, J. W., & Badamana, M. S. (2010). Use of test-day records to predict first lactation 305-day milk yield using artificial neural network in Kenyan Holstein–Friesian dairy cows. Tropical Animal Health and Production, 42(4), 639-644. doi: 10.1007/s11250-009-9468-7.
Pour Hamidi, S., Mohammadabadi, M. R., Asadi Foozi, M., & Nezamabadi-pour, H. (2017). Prediction of breeding values for the milk production trait in Iranian Holstein cows applying artificial neural networks. Journal of Livestock Science and Technologies, 5(2), 53-61. doi: 10.22103/jlst.2017.10043.1188.
Reed, R. D., & Marks, R. J. (1998). Neural smithing: Supervised learning in feed forward artificial neural networks. Cambridge, UK: MIT Press.
Ribeiro, N. D., Mambrin, R. B., Storck, L., Prigol, M., & Nogueira, C. W. (2013). Combined selection for grain yield, cooking quality and minerals in the common bean. Revista Ciência Agronômica, 44(4), 869-877. doi: 10.1590/S1806-66902013000400025.
Roush, W. B., Dozier, W. A., & Branton, S. L. (2006). Comparison of Gompertz and neural network models of broiler growth. Poultry Science, 85(4), 794-797. doi: 10.1093/ps/85.4.794.
Ruhil, A. P., Raja, T. V., & Gandhi, R. S. (2013). Preliminary study on prediction of body weight from morphometric measurements of goats through ANN models. Journal of the Indian Society of Agricultural Statistics, 67(1), 51-58.
Saatci, M., Dewi, I. A., & Ulutas, Z. (1999). Variance components due to direct and maternal effects and estimation of breeding values for 12-week weight of Welsh Mountain lambs. Animal Science, 69(2), 345-352.
Salehi, F., Lacroix, R., & Wade, K. M. (1998). Improving dairy yield predictions through combined record classifiers and specialized artificial neural networks. Computers and Electronics in Agriculture, 20(3), 199-213. doi: 10.1016/S0168-1699(98)00018-0.
Sharma, A. K., Sharma, R. K., & Kasana, H. S. (2006). Empirical comparisons of feed-forward connectionist and conventional regression models for prediction of first lactation 305-day milk yield in Karan Fries dairy cows. Neural Computing & Applications, 15(3-4), 359-365. doi: 10.1007/s00521-006-0037-y.
Sharma, A. K., Sharma, R. K., & Kasana, H. S. (2007). Prediction of first lactation 305-day milk yield in Karan Fries dairy cattle using ANN modeling. Applied Soft Computing, 7(3), 1112-1120. doi: 10.1016/j.asoc.2006.07.002.
Vaez, T. R., Nicolas, F. W., & Raadsma, H. W. (1996). REML estimates of variance and covariance components for production traits in Australian Merino sheep, using an animal model. 1. Body weight from birth to 22 months. Australian Journal of Agricultural Research, 47(8), 1235-1249.
Vassileva, S. T., & Radev, D. (2001). Application of neural networks in dairy husbandry. Biotechnology in Animal Husbandry, 1, 287-294.
Verardi, C. K., Oliveira, A. L. B., Silva, G. A. P., Gouvêa, L. R. L., & Gonçalves, P. S. (2014). Comparison between different selection methods of rubber trees. Industrial Crops and Products, 52, 255-263. doi: 10.1016/j.indcrop.2013.10.038.
Wilkinson, R. F., Ming, R., Anderson, B., Bunch, T. D., & White, K. L. (1996). The use of neural networks in developing novel embryo culture media-formulations. Theriogenology, 45(1), 41-49. doi: 10.1016/0093-691X(95)00353-A.
Zamani, P., Akhondi, M., & Mohammadabadi, M. (2015). Associations of inter-simple sequence repeat loci with predicted breeding values of body weight in sheep. Small Ruminant Research, 132, 123-127. doi: 10.1016/j.smallrumres.2015.10.018.
DECLARAÇÃO DE ORIGINALIDADE E DIREITOS AUTORAIS
Declaro que o presente artigo é original, não tendo sido submetido à publicação em qualquer outro periódico nacional ou internacional, quer seja em parte ou em sua totalidade.
Os direitos autorais pertencem exclusivamente aos autores. Os direitos de licenciamento utilizados pelo periódico é a licença Creative Commons Attribution 4.0 (CC BY 4.0): são permitidos o compartilhamento (cópia e distribuição do material em qualqer meio ou formato) e adaptação (remix, transformação e criação de material a partir do conteúdo assim licenciado para quaisquer fins, inclusive comerciais.
Recomenda-se a leitura desse link para maiores informações sobre o tema: fornecimento de créditos e referências de forma correta, entre outros detalhes cruciais para uso adequado do material licenciado.