Vegetable choline as a replacement for choline chloride in broiler feed
Resumo
The objective of this study was to determine choline chloride replacement effects by a vegetable choline source, compost by Trachyspermum amni, Citrullus colocynthis, Achyranthus aspera, and Azadirachta indica in broiler feed. These compounds are fonts of phosphatidylcholine, a high-disponible molecule for intestinal absorption and choline supply. A total of 640 animals were randomly allocated in a completely randomized design, with four treatments and eight repetitions (n = 20), and zootechnical performance (body weight, weight gain, feed conversion ratio, and productive efficiency index), carcass yield, cuts yield, and organs (heart, liver, proventriculus, gizzard, and small intestine) relative weights were evaluated. Were evaluated two choline chloride levels (600 and 800 mg kg-1) and two vegetable choline levels (100 and 200 mg kg-1), added in a corn-soybean meal basal diet, during 42 days of raising. Results revealed better feed conversion ratio (p < 0.001) and production efficiency index (p < 0.001) in broilers fed vegetable choline, with no differences on body weight (p = 0.372) and weight gain (p = 0.427) among broilers. Carcass, cuts yield, and organ relative weights do not alter (p > 0.05) due to different group of supplementations. Findings in this trial concludes vegetable choline can adequately replace choline chloride in broiler feed, with improvement on performance and no compromising carcass, cuts or organ development.
Downloads
Referências
Brasil. Ministério da Ciência, Tecnologia e Inovação. (2013). Diretrizes para a prática de eutanásia do CONCEA. Brasília, DF: MCTI.
Calderano, A. A., Nunes, R. V., Rodrigueiro, R. J. B., & César, R. A. (2015). Replacement of choline chloride by a vegetal source of choline in diets for broilers. Ciência Animal Brasileira, 16(1), 37-44. DOI: https://doi.org/10.1590/1089-6891v16i127404
Craciun, S., & Balskus, E. P. (2012). Microbial conversion of choline to trimethylamine requires a glycyl radical enzyme. Proceedings of the National Academy of Sciences of United States of America, 109(52), 21307-21312. DOI: https://doi.org/10.1073/pnas.1215689109
Demattê Filho, L. C., Pereira, D. C. O., & Possamai, E. (2015). Dietary supplementation of alternative methionine and choline sources in the organic broiler production in Brazil. Revista Brasileira de Ciência Avícola, 17(4), 489-496. DOI: https://doi.org/10.1590/1516-635X1704489-496
El-Maaty A., Hayam, M. A., Rabie, M.H., & El-Khateeb, A. Y. (2014). Response of heat-stressed broiler chicks to dietary supplementation with some commercial herbs. Asian Journal of Animal Veterinary Advances, 9(12), 743-55. DOI: https://doi.org/10.3923/ajava.2014.743.755
Farina, G., Kessler, A. M., Ebling, P. D., Marx, F. R., César, R., & Ribeiro, A. M. L. (2017). Performance of broilers fed different dietary choline sources and levels. Ciência Animal Brasileira, 18, 1-14. DOI: https://doi.org/10.1590/1089-6891v18e-37633
Fallah, F., Ebrahimnezhad, Y., Maheri-Sis, N., & Ghasemi-Sadabadi, M. (2016). The effect of different levels of diet total volatile nitrogen on performance, carcass characteristics and meat total volatile nitrogen in broiler chickens. Archivos of Animal Breeding, 59(2), 191-199. DOI: https://doi.org/10.5194/aab-59-191-2016
Hoyles, L., Jiménez-Pranteda, M., Chilloux, J., Brial, F., Myridakis, A., Aranias, T., … Dummas, M. E. (2018). Metabolic retroconversion of trimethylamine N-oxide and the gut microbiota. Microbiome, 6(73), 1-14. DOI: https://doi.org/10.1186/s40168-018-0461-0
Huang, J., Yang, D., & Wang, T. (2007). Effects of replacing soy-oil with soy-lecithin on growth performance, nutrient utilization and serum parameters of broilers fed corn-based diets. Asian-Australian Journal of Animal Science, 20(12), 1880-1886. DOI: https://doi.org/10.5713/ajas.2007.1880
Igwe I. R., Okonkwo, C. J., Uzoukwu, U. G., & Onyenegecha, C. O. (2015). The effect of choline chloride on the performance of broiler chickens. Annual Research & Review in Biology, 8(3), 1-8. DOI: https://doi.org/10.9734/ARRB/2015/19372
Jukes, T. H., Oleson, J. J., & Dornbrush, A. (1945). Observations on monomethyl aminoethanol and dimethylaminoethanol in the diet of chicks. Journal of Nutrition, 30(3), 219-223. DOI: https://doi.org/10.1093/jn/30.3.219
Khosravinia, H., Chethen, P. S., Umakantha, B., & Nourmohammadi, R. (2015). Effects of lipotropic products on productive performance, liver lipid and enzymes activity in broiler chickens. Poultry Science Journal, 3(2), 113-120.
Kumar, V., Das, S. N., Rao, A. T., & Chatterjee, S. (2009). Sub-acute toxicity study of herbal biocholine powder. Phytomedica, 11(1), 85-89.
Landfald, B., Valeur, J., Berstad, A., & Raa, J. (2017). Microbial trimethylamine-N-oxide as a disease marker: something fishy? Microbial Ecology in Health and Disease, 28(1), 1-4. DOI: https://doi.org/10.1080/16512235.2017.1327309
Pompeu, M. A., Lara, L. J. C., Baião, N. C., Ecco, R., Cançado, S. V., Rocha, J. S. R., Machado, A. L. C., & Vasconcelos, R. J. C. (2011). Suplementação de colina em dietas para frangos de corte machos na fase inicial de criação. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 63(6), 1446-1452. DOI: https://doi.org/10.1590/S0102-09352011000600023
Rodelas, A. P. M., Magpantay, V. A., & Luis, E. S. (2011). Efficacy of biocholine alone or in combination with herbal vitamins C and E on the growth performance of broilers. Phillipp Journal of Veterinary and Animal Science, 37(1), 19-26.
Rostagno. H. S., Albino, L. F. T., Donzele, J. L., Gomes, P. C., Oliveira, R. F., Lopes, D. C., Ferreira, A. S., & Barreto, S. L. T. (2011). Tabelas brasileiras para aves e suínos: composição de alimentos e exigências nutricionais (3a. ed.). Viçosa, MG: UFV.
Selvam, R., Saravanakumar, M., Suresh, S., Chandrasekeran, C. V., & D’Souza, P. (2018). Evaluation of polyherbal formulation and synthetic choline chloride on choline deficiency model in broilers: implications on zootechnical parameters, serum biochemistry and liver histopathology. Asian-Austral Journal of Animal Science, 31(11), 1795-1806. DOI: https://doi.org/10.5713/ajas.18.0018
Zeisel, S. H., Mar, M., Howe, J. C., & Holden, J. M. (2003). Concentrations of choline-containing compounds and betaine in common foods. Journal of Nutriton, 133(5), 1302-1307. DOI: https://doi.org/10.1093/jn/133.5.1302
Zhang, B., Haitao, L., Zhao, D., Guo, Y., & Barri, A. (2011). Effect of fat type and lysophosphatidylcholine addition to broiler diets on performance, apparent digestibility of fatty acids, and apparent metabolizable energy content. Animal Feed Science and Technology, 163, 177-184. DOI: https://doi.org/10.1016/j.anifeedsci.2010.10.004
DECLARAÇÃO DE ORIGINALIDADE E DIREITOS AUTORAIS
Declaro que o presente artigo é original, não tendo sido submetido à publicação em qualquer outro periódico nacional ou internacional, quer seja em parte ou em sua totalidade.
Os direitos autorais pertencem exclusivamente aos autores. Os direitos de licenciamento utilizados pelo periódico é a licença Creative Commons Attribution 4.0 (CC BY 4.0): são permitidos o compartilhamento (cópia e distribuição do material em qualqer meio ou formato) e adaptação (remix, transformação e criação de material a partir do conteúdo assim licenciado para quaisquer fins, inclusive comerciais.
Recomenda-se a leitura desse link para maiores informações sobre o tema: fornecimento de créditos e referências de forma correta, entre outros detalhes cruciais para uso adequado do material licenciado.