The efficiency of rumen microbial nitrogen and biomass synthesis of some indigenous range plants using 15N-tracer technique

Palavras-chave: microbial protein; nutrient; range plant; ruminant.

Resumo

This study was performed to evaluate, by the use of in vitro incubation technique with ruminal liquid and 15N-tracer for 96 h, some perennial range plants (Artemisia herba-alba Asso, Noaea mucronata Forssk, Lavandula angustifolia Mill, Astragalus spinosus Forssk, Capparis spinosa L.) grown naturally on dry rangelands, in terms of rumen microbial nitrogen (M.N), microbial biomass (M.BM), true fermented organic matter (T.F.OM) and quantification of the efficiency of M.N and M.BM synthesis (M.N or M.BM / T.F.OM), and study the effect of polyethylene glycol (P.E.G) on the aforementioned parameters. C. spinosa had the highest (p < 0.05) values of T.F.OM, M.N and M.BM. Microbial N and M.BM values ranged from 0.57 to 0.82 mg g-1 DM and from 6.13 to 9.46 mg g-1 DM, respectively. There were no significant (p > 0.05) differences among plant species in terms of the efficiency of M.N and M.BM synthesis, and the average amounted to 0.282 g and 3.25 g 100 g-1 of truly fermented organic matter, respectively. M.BM and M.N values were negatively correlated with lignin but positively correlated with soluble nitrogen. P.E.G supplementation and the interaction between P.E.G treatment and plant species had no significant (p > 0.05) effect on the estimated parameters.  

Downloads

Não há dados estatísticos.

Referências

Abel, H., Coenen, G., & Immig, I. (1990). Untersuchungen zum Einfluß von Fett- und Stärkezulagen auf den mikrobiellen Stoffwechsel im Pansensimulationssystem RUSITEC. Journal of Animal Physiology and Animal Nutrition, 64(1-5), 62-73. DOI: https://doi.org/10.1111/j.1439-0396.1990.tb00205.x

Al-Masri, M. R. (2003). An in vitro evaluation of some unconventional ruminant feeds in terms of the organic matter digestibility, energy and microbial biomass. Tropical Animal Health and Production, 35, 155-167. DOI: http://doi.org/10.1023/A:1022877603010

Al-Masri, M. R. (2007). An in vitro evaluation of some drought-tolerant native range plants in terms of ruminal microbial nitrogen, microbial biomass and their fermentation characteristics utilising a gas-production technique. Tropical Grasslands, 41(4), 292-300. DOI: https://doi.org/10.1.1.1049.5799

Al-Masri, M. R. (2010). In vitro rumen fermentation kinetics and nutritional evaluation of Kochia indica as affected by harvest time and cutting regimen. Animal Feed Science and Technology, 157(1-2), 55-63. DOI: https://doi.org/10.1016/j.anifeedsci.2010.01.013

Al-Masri, M. R. (2011). Evaluation of some drought-tolerant native range plants in terms of their nutritive components and in vitro digestible organic matter and metabolizable energy. Tropical Agriculture, 88(2), 61-68. DOI: http://dx.doi.org/0041-3216/2011/020061-08

Al-Masri, M. R. (2012). An in vitro nutritive evaluation of olive tree (Olea europaea) pruning residues as affected by cutting regimen. Bioresource Technology, 103(1), 234-238. DOI: https://doi.org/10.1016/j.biortech.2011.09.130

Al-Masri, M. R. (2013). Nutritive evaluation of some native range plants and their nutritional and anti-nutritional components. Journal of Applied Animal Research, 41(4), 427-431. DOI: https://doi.org/10.1080/09712119.2013.792733

Al-Masri, M. R. (2015). Nutritional evaluation of leaves of some salt-tolerant tree species by assessing, in vitro, the ruminal microbial nitrogen and fermentation characteristics. Livestock Research for Rural Development, 27(2).

Al-Masri, M. R. (2016). In vitro rumen fermentation kinetics and nutritional evaluation of olive tree (Olea europaea L.) pruning residues as affected by cutting regimen. Livestock Research for Rural Development, 28(8).

Aregawi, T., Melaku, S., & Nigatu, L. (2008). Management and utilization of browse species as livestock feed in semi-arid district of North Ethiopia. Livestock Research for Rural Development, 20(6).

Blümmel, M., Makkar, H. P. S., & Becker, K. (1997). In vitro gas production: a technique revisited. Journal of Animal Physiology and Animal Nutrition, 77(1-5), 24-34. DOI: https://doi.org/10.1111/j.1439-0396.1997.tb00734.x

Czerkawski, J. W. (1986). An introduction to rumen studies. Oxford, GB: Pergamom Press.

García, A. I. M., Ruiz, D. R. Y., Moumen, A., & Alcaide, E. M. (2004). Effect of polyethylene-glycol on the chemical composition and nutrient availability of olive (Olea europaea var. europaea) by-products. Animal Feed Science and Technology, 114(1-4), 159-177. DOI: http://dx.doi.org/10.1016/j.anifeedsci.2004.01.003

Getachew, G., Makkar, H. P. S., & Becker, K. (2000). Effect of polyethylene glycol on in vitro degradability ofnitrogen and microbial protein synthesis fromtannin-rich browse and herbaceous legumes. British Journal of Nutrition, 84(1), 73-83. DOI: https://doi.org/10.1017/S0007114500001252

Getachew, G., Robinson, P. H., DePeters, E. J., & Taylor, S. J. (2004). Relationships between chemical composition, dry matter degradation and in vitro gas production of several ruminant feeds. Animal Feed Science and Technology, 111(1-4), 57-71. DOI: https://doi.org/10.1016/S0377-8401(03)00217-7

Hassen, A., Tessema, Z. K., & Tolera, A. (2017). Seasonal variations in chemical composition, in vitro digestibility and ruminal degradation of browse species in the Rift Valley of Ethiopia. Livestock Research for Rural Development, 29(6).

Hoover, W. H., & Stokes, S. R. (1991). Balancing carbohydrates and proteins for optimum rumen microbial yield. Journal of Dairy Science, 74(10), 3630-3644. DOI: https://doi.org/10.3168/jds.S0022-0302(91)78553-6

Kamalak, A., Canbolat, O., Gurbuz, Y., Ozay, O., & Ozkose, E. (2005). Chemical composition and its relationship to in vitro gas production of several tannin containing trees and shrub leaves. Asian-Australasian Journal of Animal Sciences, 18(2), 203-208. DOI: https://doi.org/10.5713/ajas.2005.203

Makkar, H. P. S., Blümmel, M., & Becker, K. (1995). Formation of complexes between polyvinyl pyrrolidones or polyethylene glycols and tannins, and their implication in gas production and true digestibility in in vitro techniques. British Journal of Nutrition, 73(6), 897-913. DOI: https://doi.org/10.1079/BJN19950095

McSweeney, C. S., Palmer, B., McNeill, D. M., & Krause, D. O. (2001). Microbial interactions with tannins: nutritional consequences for ruminants. Animal Feed Science and Technology, 91(1-2), 83-93. DOI: https://doi.org/10.1016/S0377-8401(01)00232-2

Mullik, M. L., Poppi, D. P., & McLennan, S. R. (2008). Quantification of the efficiency of rumen microbial protein synthesis in steers fed green tropical grass. Majalah Ilmiah Peternakan, 11, 18-24.

Pathak, A. K. (2008). Various factors affecting microbial protein synthesis in the rumen. Veterinary World, 1(6), 186-189.

Preston, T. R., Leng, R. A., & Gomez, M. E. (2021). Adapting systems of livestock production to be compatible with global commitments to restore the health of planet Earth; ecosystems that remove atmospheric carbon and provide, food, feed and renewable energy. Livestock Research for Rural Development, 33(3).

Van Soest, P. J., & Robertson, J. B. (1985). Analysis of forages and fibrous foods a laboratory manual for animal science. Ithaca, NY: Cornell University.

Publicado
2024-11-13
Como Citar
Al-Masri, M. R. (2024). The efficiency of rumen microbial nitrogen and biomass synthesis of some indigenous range plants using 15N-tracer technique. Acta Scientiarum. Animal Sciences, 47(1), e70751. https://doi.org/10.4025/actascianimsci.v47i1.70751
Seção
Nutrição de Ruminantes

0.9
2019CiteScore
 
 
29th percentile
Powered by  Scopus