Exploring potential application of novel urease-producing bacterium for sustainable soil stabilization via microbially induced calcium carbonate precipitation
Resumo
Microbially induced calcium carbonate precipitation (MICP) is a sustainable process involving microbial-mediated calcium carbonate precipitation with applications in geotechnical engineering, construction, and environmental remediation. Soil samples from paddy fields were screened for ureolytic bacteria, and the isolate with the highest urease activity was identified as Bacillus tequilensis strain AK1 via 16S rRNA sequencing. The strain achieved a maximum CaCO₃ precipitation of 23.00 mg mL-1 on Day 20 in broth media and a calcite precipitation zone diameter of 17.05 mm in agar media. Bioconsolidation of soil with Bacillus tequilensis strain AK1 showed significant enhancements in soil properties. Retention time increased to 164 sec compared to 15 sec in controls, while penetration distance decreased to 43 mm, a substantial reduction from 483 mm in untreated samples. Water absorption was notably reduced to 7.4%, compared to 66.5% in controls. These findings confirm that microbial calcite precipitation effectively aggregates particles and fills pore spaces, improving soil structural integrity. This study highlights the potential of Bacillus tequilensis strain AK1 for sustainable bioconsolidation, offering a promising solution for soil stabilization, construction, and environmental remediation.
Downloads
Referências
Abo-El-Enein, S. A., Ali, A. H., Talkhan, F. N., & Abdel-Gawwad, H. A. (2012). Utilization of microbial induced calcite precipitation for sand consolidation and mortar crack remediation. HBRC Journal, 8(3), 185–192. https://doi.org/10.1016/j.hbrcj.2012.10.002
Achal, V., Mukherjee, A., Basu, P. C., & Reddy, M. S. (2009). Strain improvement of Sporosarcina pasteurii for enhanced urease and calcite production. Journal of Industrial Microbiology & Biotechnology, 36(9), 981–988. https://doi.org/10.1007/s10295-009-0612-0
Al-Thawadi, S., & Cord-Ruwisch, R. (2012). Calcium carbonate crystals formation by ureolytic bacteria isolated from Australian soil and sludge. Journal of Advanced Science and Engineering Research, 2(1), 12–26. https://doi.org/10.15515/jaser.2012.21002
Andreolli, M., Lampis, S., Zenaro, E., Salkinoja-Salonen, M., & Vallini, G. (2011). Burkholderia fungorum DBT1: A promising bacterial strain for bioremediation of PAHs-contaminated soils. FEMS Microbiology Letters, 319(1), 11–18. https://doi.org/10.1111/j.1574-6968.2011.02298.x
DeJong, T. T., Mortensen, B. M., Martinez, B. C., & Nelson, D. C. (2010). Bio-mediated soil improvement. Ecological Engineering, 36(2), 197–210. https://doi.org/10.1016/j.ecoleng.2009.02.008
Dhami, N. K., Alsubhi, W. R., Watkin, E., & Mukherjee, A. (2017). Bacterial community dynamics and biocement formation during stimulation and augmentation: Implications for soil consolidation. Frontiers in Microbiology, 8, 1267. https://doi.org/10.3389/fmicb.2017.01267
Dhami, N. K., Reddy, M. S., & Mukherjee, A. (2013). Biomineralization of calcium carbonate polymorphs by the bacterial strains isolated from calcareous sites. Journal of Microbiology and Biotechnology, 23(5), 707–714. https://doi.org/10.4014/jmb.1301.01007
Dikshit, R., Jain, A., Dey, A., & Kumar, A. (2020). Microbially induced calcite precipitation using Bacillus velezensis with guar gum. PLOS ONE, 15(8), e0236745. https://doi.org/10.1371/journal.pone.0236745
Ghosh, T., Bhaduri, S., Montemagno, C., & Kumar, A. (2019). Sporosarcina pasteurii can form nanoscale calcium carbonate crystals on cell surface. PLoS One, 14(8), e0210339. https://doi.org/10.1371/journal.pone.0210339
Gowthaman, S., Iki, T., Nakashima, K., Ebina, K., & Kawasaki, S. (2019). Feasibility study for slope soil stabilization by microbial induced carbonate precipitation (MICP) using indigenous bacteria isolated from cold subarctic region. SN Applied Sciences, 1(9), 1–16. https://doi.org/10.1007/s42452-019-1508-y
Hammad, I. A., Talkhan, F. N., & Zoheir, A. E. (2013). Urease activity and induction of calcium carbonate precipitation by Sporosarcina pasteurii NCIMB 8841. Journal of Applied Sciences Research, 9(5), 1525–1533. https://doi.org/10.9734/JASR/2013/3140
Hammes, F., & Verstraete, W. (2002). Key roles of pH and calcium metabolism in microbial carbonate precipitation. Reviews in Environmental Science and Biotechnology, 1(1), 3–7. https://doi.org/10.1023/A:1015135629155
Jacobs, A., Lafolie, F., Herry, J. M., & Debroux, M. (2007). Kinetic adhesion of bacterial cells to sand: Cell surface properties and adhesion rate. Colloids and Surfaces B: Biointerfaces, 59(1), 35–45. https://doi.org/10.1016/j.colsurfb.2007.03.002
Kang, C. H., Kwon, Y. J., & So, J. S. (2016). Soil bioconsolidation through microbially induced calcite precipitation by Lysinibacillus sphaericus WJ-8. Geomicrobiology Journal, 33(5), 473–478. https://doi.org/10.1080/01490451.2015.1137600
Khadim, H. J., Ebrahim, S. E., & Ammai, S. H. (2022). Sand bioconsolidation/biosolidification by microbially induced carbonate precipitation using ureolytic bacteria. AIP Conference Proceedings, 2398(1), 1–6. https://doi.org/10.1063/5.0089070
Krishnapriya, S., & Babu, D. V. (2015). Isolation and identification of bacteria to improve the strength of concrete. Microbiological Research, 174, 48–55. https://doi.org/10.1016/j.micres.2015.02.003
Ma, L., Pang, A. P., Luo, Y., Lu, X., & Lin, F. (2020). Beneficial factors for biomineralization by ureolytic bacterium Sporosarcina pasteurii. Microbial Cell Factories, 19(1), 1–12. https://doi.org/10.1186/s12934-020-1281-z
Madigan, M. T., Martinko, J. M., & Parker, J. (2003). Brock biology of microorganisms (10th ed.). Pearson Education Inc.
Mitchell, A. C., & Ferris, F. G. (2005). The coprecipitation of Sr into calcite precipitates induced by bacterial ureolysis in artificial groundwater: Temperature and kinetic dependence. Geochimica et Cosmochimica Acta, 69(17), 4199–4210. https://doi.org/10.1016/j.gca.2005.04.010
Nayanthara, P. G. N., Dassanayake, A. B. N., Nakashima, K., & Kawasaki, S. (2019). Biocementation of Sri Lankan beach sand using locally isolated bacteria: A baseline study on the effect of segregated culture media. GEOMATE Journal, 17(63), 55–62. https://doi.org/10.21660/2019.63.8238
Paidhungat, M., & Setlow, P. (2001). Spore germination and outgrowth. In P. J. Schaeffer (Ed.), Bacillus subtilis and its closest relatives: From genes to cells (pp. 537–548). ASM Press.
Park, I. S., & Hausinger, R. P. (1995). Requirement of carbon dioxide for in vitro assembly of the urease nickel metallocenter. Science, 267(5195), 1156–1158. https://doi.org/10.1126/science.267.5195.1156
Peng, J., & Liu, Z. (2019). Influence of temperature on microbially induced calcium carbonate precipitation for soil treatment. PLoS One, 14(3), e0218396. https://doi.org/10.1371/journal.pone.0218396
Qian, C., Wang, R., Cheng, L., & Wang, J. (2010). Theory of microbial carbonate precipitation and its application in restoration of cement-based materials defects. Chinese Journal of Chemistry, 28(7), 847–857. https://doi.org/10.1002/cjoc.201090126
Sarda, D., Choonia, H. S., Sarode, D. D., & Lele, S. S. (2009). Biocalcification by Bacillus pasteurii urease: a novel application. Journal of Industrial Microbiology and Biotechnology, 36(8), 1111–1115. https://doi.org/10.1007/s10295-009-0581-4
Setlow, P. (2010). Resistance of bacterial spores. In P. Setlow (Ed.), Bacterial stress responses (pp. 319–332). Springer. https://doi.org/10.1007/978-1-4419-1673-0_19
Stähler, F. N., Ganter, L., Lederer, K., Kist, M., & Bereswill, S. (2005). Mutational analysis of the Helicobacter pylori carbonic anhydrases. FEMS Immunology & Medical Microbiology, 44(2), 183–189. https://doi.org/10.1016/j.femsim.2005.03.013
Sujatha, P., Kumar, B. N., & Kalarani, V. (2012). Isolation, characterization, and molecular identification of bacteria from tannery effluent using 16S rRNA sequencing. International Journal of Environmental Sciences, 3(1), 1–8. https://doi.org/10.6088/ijes.2012030101001
Vekariya, M. S., & Pitroda, J. (2013). Bacterial concrete: New era for construction industry. International Journal of Engineering Trends and Technology, 4(11), 4128–4137. https://doi.org/10.14445/22315381/IJETT-V4P234
Wang, J. Y., Soens, H., Verstraete, W., & De Belie, N. (2014). Self-healing concrete by use of microencapsulated bacterial spores. Cement and Concrete Research, 56, 139–152. https://doi.org/10.1016/j.cemconres.2013.11.004
Weiner, S. (2008). Biomineralization: A structural perspective. Journal of Structural Biology, 163(2), 229–234. https://doi.org/10.1016/j.jsb.2008.02.006
Wiencek, K. M., Klapes, N. A., & Foegeding, P. M. (1990). Hydrophobicity of Bacillus and Clostridium spores. Applied and Environmental Microbiology, 56(8), 2600–2605. https://doi.org/10.1128/aem.56.8.2600-2605.1990
Yuan, L. (2020). Influencing factors and formation mechanism of CaCO3 precipitation induced by microbial carbonic anhydrase. Biotechnology Bulletin, 36, 79. https://doi.org/10.1016/j.biotech.2020.05.003
Copyright (c) 2025 Achuth Jayakrishnan, Abhijith Kozhipally, Mahenthiran Ramasamy (Autor)

This work is licensed under a Creative Commons Attribution 4.0 International License.
DECLARAÇÃO DE ORIGINALIDADE E DIREITOS AUTORAIS
Declaro que o presente artigo é original, não tendo sido submetido à publicação em qualquer outro periódico nacional ou internacional, quer seja em parte ou em sua totalidade.
Os direitos autorais pertencem exclusivamente aos autores. Os direitos de licenciamento utilizados pelo periódico é a licença Creative Commons Attribution 4.0 (CC BY 4.0): são permitidos o compartilhamento (cópia e distribuição do material em qualqer meio ou formato) e adaptação (remix, transformação e criação de material a partir do conteúdo assim licenciado para quaisquer fins, inclusive comerciais.
Recomenda-se a leitura desse link para maiores informações sobre o tema: fornecimento de créditos e referências de forma correta, entre outros detalhes cruciais para uso adequado do material licenciado.