Exploring potential application of novel urease-producing bacterium for sustainable soil stabilization via microbially induced calcium carbonate precipitation

  • Achuth Jayakrishnan Hindusthan College of Arts and Science https://orcid.org/0000-0002-3925-2489
  • Abhijith Kozhipally Hindusthan College of Arts and Science
  • Mahenthiran Ramasamy Dr. NGP Arts & Science College
Palavras-chave: Microbially induced calcium carbonate precipitation; urease-producing bacteria; bioconsolidation; bioremediation; calcium carbonate.

Resumo

Microbially induced calcium carbonate precipitation (MICP) is a sustainable process involving microbial-mediated calcium carbonate precipitation with applications in geotechnical engineering, construction, and environmental remediation. Soil samples from paddy fields were screened for ureolytic bacteria, and the isolate with the highest urease activity was identified as Bacillus tequilensis strain AK1 via 16S rRNA sequencing. The strain achieved a maximum CaCO₃ precipitation of 23.00 mg mL-1 on Day 20 in broth media and a calcite precipitation zone diameter of 17.05 mm in agar media. Bioconsolidation of soil with Bacillus tequilensis strain AK1 showed significant enhancements in soil properties. Retention time increased to 164 sec compared to 15 sec in controls, while penetration distance decreased to 43 mm, a substantial reduction from 483 mm in untreated samples. Water absorption was notably reduced to 7.4%, compared to 66.5% in controls. These findings confirm that microbial calcite precipitation effectively aggregates particles and fills pore spaces, improving soil structural integrity. This study highlights the potential of Bacillus tequilensis strain AK1 for sustainable bioconsolidation, offering a promising solution for soil stabilization, construction, and environmental remediation.

Downloads

Não há dados estatísticos.

Referências

Abo-El-Enein, S. A., Ali, A. H., Talkhan, F. N., & Abdel-Gawwad, H. A. (2012). Utilization of microbial induced calcite precipitation for sand consolidation and mortar crack remediation. HBRC Journal, 8(3), 185–192. https://doi.org/10.1016/j.hbrcj.2012.10.002

Achal, V., Mukherjee, A., Basu, P. C., & Reddy, M. S. (2009). Strain improvement of Sporosarcina pasteurii for enhanced urease and calcite production. Journal of Industrial Microbiology & Biotechnology, 36(9), 981–988. https://doi.org/10.1007/s10295-009-0612-0

Al-Thawadi, S., & Cord-Ruwisch, R. (2012). Calcium carbonate crystals formation by ureolytic bacteria isolated from Australian soil and sludge. Journal of Advanced Science and Engineering Research, 2(1), 12–26. https://doi.org/10.15515/jaser.2012.21002

Andreolli, M., Lampis, S., Zenaro, E., Salkinoja-Salonen, M., & Vallini, G. (2011). Burkholderia fungorum DBT1: A promising bacterial strain for bioremediation of PAHs-contaminated soils. FEMS Microbiology Letters, 319(1), 11–18. https://doi.org/10.1111/j.1574-6968.2011.02298.x

DeJong, T. T., Mortensen, B. M., Martinez, B. C., & Nelson, D. C. (2010). Bio-mediated soil improvement. Ecological Engineering, 36(2), 197–210. https://doi.org/10.1016/j.ecoleng.2009.02.008

Dhami, N. K., Alsubhi, W. R., Watkin, E., & Mukherjee, A. (2017). Bacterial community dynamics and biocement formation during stimulation and augmentation: Implications for soil consolidation. Frontiers in Microbiology, 8, 1267. https://doi.org/10.3389/fmicb.2017.01267

Dhami, N. K., Reddy, M. S., & Mukherjee, A. (2013). Biomineralization of calcium carbonate polymorphs by the bacterial strains isolated from calcareous sites. Journal of Microbiology and Biotechnology, 23(5), 707–714. https://doi.org/10.4014/jmb.1301.01007

Dikshit, R., Jain, A., Dey, A., & Kumar, A. (2020). Microbially induced calcite precipitation using Bacillus velezensis with guar gum. PLOS ONE, 15(8), e0236745. https://doi.org/10.1371/journal.pone.0236745

Ghosh, T., Bhaduri, S., Montemagno, C., & Kumar, A. (2019). Sporosarcina pasteurii can form nanoscale calcium carbonate crystals on cell surface. PLoS One, 14(8), e0210339. https://doi.org/10.1371/journal.pone.0210339

Gowthaman, S., Iki, T., Nakashima, K., Ebina, K., & Kawasaki, S. (2019). Feasibility study for slope soil stabilization by microbial induced carbonate precipitation (MICP) using indigenous bacteria isolated from cold subarctic region. SN Applied Sciences, 1(9), 1–16. https://doi.org/10.1007/s42452-019-1508-y

Hammad, I. A., Talkhan, F. N., & Zoheir, A. E. (2013). Urease activity and induction of calcium carbonate precipitation by Sporosarcina pasteurii NCIMB 8841. Journal of Applied Sciences Research, 9(5), 1525–1533. https://doi.org/10.9734/JASR/2013/3140

Hammes, F., & Verstraete, W. (2002). Key roles of pH and calcium metabolism in microbial carbonate precipitation. Reviews in Environmental Science and Biotechnology, 1(1), 3–7. https://doi.org/10.1023/A:1015135629155

Jacobs, A., Lafolie, F., Herry, J. M., & Debroux, M. (2007). Kinetic adhesion of bacterial cells to sand: Cell surface properties and adhesion rate. Colloids and Surfaces B: Biointerfaces, 59(1), 35–45. https://doi.org/10.1016/j.colsurfb.2007.03.002

Kang, C. H., Kwon, Y. J., & So, J. S. (2016). Soil bioconsolidation through microbially induced calcite precipitation by Lysinibacillus sphaericus WJ-8. Geomicrobiology Journal, 33(5), 473–478. https://doi.org/10.1080/01490451.2015.1137600

Khadim, H. J., Ebrahim, S. E., & Ammai, S. H. (2022). Sand bioconsolidation/biosolidification by microbially induced carbonate precipitation using ureolytic bacteria. AIP Conference Proceedings, 2398(1), 1–6. https://doi.org/10.1063/5.0089070

Krishnapriya, S., & Babu, D. V. (2015). Isolation and identification of bacteria to improve the strength of concrete. Microbiological Research, 174, 48–55. https://doi.org/10.1016/j.micres.2015.02.003

Ma, L., Pang, A. P., Luo, Y., Lu, X., & Lin, F. (2020). Beneficial factors for biomineralization by ureolytic bacterium Sporosarcina pasteurii. Microbial Cell Factories, 19(1), 1–12. https://doi.org/10.1186/s12934-020-1281-z

Madigan, M. T., Martinko, J. M., & Parker, J. (2003). Brock biology of microorganisms (10th ed.). Pearson Education Inc.

Mitchell, A. C., & Ferris, F. G. (2005). The coprecipitation of Sr into calcite precipitates induced by bacterial ureolysis in artificial groundwater: Temperature and kinetic dependence. Geochimica et Cosmochimica Acta, 69(17), 4199–4210. https://doi.org/10.1016/j.gca.2005.04.010

Nayanthara, P. G. N., Dassanayake, A. B. N., Nakashima, K., & Kawasaki, S. (2019). Biocementation of Sri Lankan beach sand using locally isolated bacteria: A baseline study on the effect of segregated culture media. GEOMATE Journal, 17(63), 55–62. https://doi.org/10.21660/2019.63.8238

Paidhungat, M., & Setlow, P. (2001). Spore germination and outgrowth. In P. J. Schaeffer (Ed.), Bacillus subtilis and its closest relatives: From genes to cells (pp. 537–548). ASM Press.

Park, I. S., & Hausinger, R. P. (1995). Requirement of carbon dioxide for in vitro assembly of the urease nickel metallocenter. Science, 267(5195), 1156–1158. https://doi.org/10.1126/science.267.5195.1156

Peng, J., & Liu, Z. (2019). Influence of temperature on microbially induced calcium carbonate precipitation for soil treatment. PLoS One, 14(3), e0218396. https://doi.org/10.1371/journal.pone.0218396

Qian, C., Wang, R., Cheng, L., & Wang, J. (2010). Theory of microbial carbonate precipitation and its application in restoration of cement-based materials defects. Chinese Journal of Chemistry, 28(7), 847–857. https://doi.org/10.1002/cjoc.201090126

Sarda, D., Choonia, H. S., Sarode, D. D., & Lele, S. S. (2009). Biocalcification by Bacillus pasteurii urease: a novel application. Journal of Industrial Microbiology and Biotechnology, 36(8), 1111–1115. https://doi.org/10.1007/s10295-009-0581-4

Setlow, P. (2010). Resistance of bacterial spores. In P. Setlow (Ed.), Bacterial stress responses (pp. 319–332). Springer. https://doi.org/10.1007/978-1-4419-1673-0_19

Stähler, F. N., Ganter, L., Lederer, K., Kist, M., & Bereswill, S. (2005). Mutational analysis of the Helicobacter pylori carbonic anhydrases. FEMS Immunology & Medical Microbiology, 44(2), 183–189. https://doi.org/10.1016/j.femsim.2005.03.013

Sujatha, P., Kumar, B. N., & Kalarani, V. (2012). Isolation, characterization, and molecular identification of bacteria from tannery effluent using 16S rRNA sequencing. International Journal of Environmental Sciences, 3(1), 1–8. https://doi.org/10.6088/ijes.2012030101001

Vekariya, M. S., & Pitroda, J. (2013). Bacterial concrete: New era for construction industry. International Journal of Engineering Trends and Technology, 4(11), 4128–4137. https://doi.org/10.14445/22315381/IJETT-V4P234

Wang, J. Y., Soens, H., Verstraete, W., & De Belie, N. (2014). Self-healing concrete by use of microencapsulated bacterial spores. Cement and Concrete Research, 56, 139–152. https://doi.org/10.1016/j.cemconres.2013.11.004

Weiner, S. (2008). Biomineralization: A structural perspective. Journal of Structural Biology, 163(2), 229–234. https://doi.org/10.1016/j.jsb.2008.02.006

Wiencek, K. M., Klapes, N. A., & Foegeding, P. M. (1990). Hydrophobicity of Bacillus and Clostridium spores. Applied and Environmental Microbiology, 56(8), 2600–2605. https://doi.org/10.1128/aem.56.8.2600-2605.1990

Yuan, L. (2020). Influencing factors and formation mechanism of CaCO3 precipitation induced by microbial carbonic anhydrase. Biotechnology Bulletin, 36, 79. https://doi.org/10.1016/j.biotech.2020.05.003

Publicado
2025-09-25
Como Citar
Jayakrishnan, A., Kozhipally, A., & Ramasamy, M. (2025). Exploring potential application of novel urease-producing bacterium for sustainable soil stabilization via microbially induced calcium carbonate precipitation. Acta Scientiarum. Biological Sciences, 47(1), e75625. https://doi.org/10.4025/actascibiolsci.v47i1.75625
Seção
Biotecnologia

 

0.6
2019CiteScore
 
 
31st percentile
Powered by  Scopus

 

 

0.6
2019CiteScore
 
 
31st percentile
Powered by  Scopus