Effect of Leishmania proteins in mice: Investigation of Leishmania amazonensis virulence molecules for therapy and prophylaxis of leishmaniasis
Abstract
It has been reported that a single injection of Leishmania amazonensis amastigote extract (LaE) in BALB/c mice exacerbates the infection of these animals with Leishmania braziliensis. This study aimed to investigate proteins of LaE that confers susceptibility to L. braziliensis infection. Methods BALB/c mice were injected with saline, LaE, isolate fractions of the LaE (68, 45, 36, and 28 kDa), or L. infantum recombinant protein Lci1 (Hsp70). After a week, the animals were infected with L. braziliensis, and the lesion’s size was monitored weekly. Six weeks later, the parasite burden in the footpads and the activities of IgG1 and IgG2a anti-LaE antibodies were determined. Additionally, the 68 and 28 kDa fractions were supplemented with serine and cysteine protease inhibitors and evaluated in the same described experimental model. The intradermal injection of BALB/c mice with 68, 36, and 28 kDa fractions of LaE, and the recombinant protein Lci1 conferred significant susceptibility to L. braziliensis infection, but not the 45 kDa fraction. This potentiating effect was associated with the increase in increment of the lesion size, parasite load, and IgG1 anti-LaE antibodies. Furthermore, the biological activity of the 68 and 28 kDa fractions was inhibited by the pretreatment of the extract with serine protease inhibitors. Our study found the biological activity of the 68, 36, and 28 kDa fractions, as well as the recombinant protein Lci1, exacerbating the infection in our experimental model.
Downloads
References
Almeida, J. V., Souza, C. F., Fuzari, A. A., Joya, C. A., Valdivia, H. O., Bartholomeu, D. C., & Brazil, R. P. (2021). Diagnosis and identification of Leishmania species in patients with cutaneous leishmaniasis in the state of Roraima, Brazil’s Amazon Region. Parasites & Vectors, 14(32). https://doi.org/10.1186/s13071-020-04539-8
Aoki, J. I., Laranjeira-Silva, M. F., Muxel, S. M., & Floeter-Winter, L. M. (2019). The impact of arginase activity on virulence factors of Leishmania amazonensis. Current Opinion in Microbiology, 52, 110-115. https://doi.org/10.1016/j.mib.2019.06.003
Araújo, C. F., Silva, V. M. G., Cronemberger-Andrade, A., Aragão-França, L. S., Rocha, V. C, J., Santos, P. S. L., & Pontes-de-Carvalho, L. (2014). Leishmania braziliensis and Leishmania amazonensis amastigote extracts differ in their enhancement effect on Leishmania infection when injected intradermally. BMC Research Notes, 7(70). https://doi.org/10.1186/1756-0500-7-70
Azeredo-Coutinho, R. B. G., Matos, D. C. S., Armôa, G. G. R., Maia, R. M., Schubach, A., Mayrink, W., & Mendonça, S. C. F. (2008). Contrasting human cytokine responses to promastigote whole-cell extract and the Leishmania analogue receptor for activated C kinase antigen of L. amazonensis in natural infection versus immunization. Clinical and Experimental Immunology, 153(3), 369-375. https://doi.org/10.1111/j.1365-2249.2008.03705.x
Beneke, T., Banecki, K., Fochler, S., & Gluenz, E. (2020). LAX28 is required for stable assembly of the inner dynein arm f/l1 and tether/tether head complex in Leishmania flagella. Journal of Cell Science, 133(2). https://doi.org/10.1242/jcs.239855
Bhowmick, S., & Ali, N. (2009). Identification of novel Leishmania donovani antigens that help define correlates of vaccine-mediated protection in visceral leishmaniasis. PLoS ONE, 4(6), e5820. https://doi.org/10.1371/journal.pone.0005820
Cardoso, S. R. A., Silva, J. C. F., Costa, R. T., Mayrink, W., Melo, M. N., Michalick, M. S. M., Liu, I. A. W., Fujiwara, R. T., & Nascimento, E. (2003). Identification and purification of immunogenic proteins from nonliving promastigote polyvalent Leishmania vaccine (Leishvacin®). Revista Da Sociedade Brasileira de Medicina Tropical, 36(2), 193-199. https://doi.org/10.1590/S0037-86822003000200001
Chu, N., Thomas, B. N., Patel, S. R., & Buxbaum, L. U. (2010). IgG1 Is pathogenic in Leishmania mexicana infection. The Journal of Immunology, 185(11), 6939-6946. https://doi.org/10.4049/jimmunol.1002484
Domínguez-Bernal, G., Horcajo, P., Orden, J. A., De La Fuente, R., Herrero-Gil, A., Ordóñez-Gutiérrez, L., & Carrión, J. (2012). Mitigating an undesirable immune response of inherent susceptibility to cutaneous leishmaniosis in a mouse model: the role of the pathoantigenic HISA70 DNA vaccine. Veterinary Research, 43(59). https://doi.org/10.1186/1297-9716-43-59
Fernández, L., Carrillo, E., Sánchez-Sampedro, L., Sánchez, C., Ibarra-Meneses, A. V., Jimenez, M. A., Almeida, V. A., Esteban, M., & Moreno, J. (2018). Antigenicity of Leishmania-Activated C-Kinase antigen (LACK) in human peripheral blood mononuclear cells, and protective effect of prime-boost vaccination with pCI-neo-LACK plus attenuated LACK-expressing vaccinia viruses in hamsters. Frontiers in Immunology, 9. https://doi.org/10.3389/fimmu.2018.00843
Garg, R., Gupta, S. K., Tripathi, P., Hajela, K., Sundar, S., Naik, S., & Dube, A. (2006). Leishmania donovani: Identification of stimulatory soluble antigenic proteins using cured human and hamster lymphocytes for their prophylactic potential against visceral leishmaniasis. Vaccine, 24(15), 2900-2909. https://doi.org/10.1016/j.vaccine.2005.12.053
Ghosh, A. K., Dasgupta, S., & Ghose, A. C. (1995). Immunoglobulin G subclass-specific antileishmanial antibody responses in Indian kala-azar and post-kala-azar dermal leishmaniasis. Clinical Diagnostic Laboratory Immunology, 2(3), 291-296. https://doi.org/10.1128/cdli.2.3.291-296.1995
Instituto Oswaldo Cruz [IOC]. (2012). Comissão de ética no uso de animais (CEUA-IOC). https://www.ioc.fiocruz.br/ceua
Ishizaki, M., Tanaka, H., Kajiwara, D., Toyohara, T., Wakahara, K., Inagaki, N., & Nagai, H. (2008). Nafamostat Mesilate, a potent serine protease inhibitor, inhibits Airway Eosinophilic Inflammation and Airway Epithelial Remodeling in a Murine Model of Allergic Asthma. Journal of Pharmacological Sciences, 108(3), 355-363. https://doi.org/10.1254/jphs.08162FP
Julia, V., Rassoulzadegan, M., & Glaichenhaus, N. (1996). Resistance to Leishmania major induced by tolerance to a single antigen. Science, 274(5286), 421-423. https://doi.org/10.1126/science.274.5286.421
Kaur, T., Sobti, R. C., & Kaur, S. (2011). Cocktail of gp63 and Hsp70 induces protection against Leishmania donovani in BALB/c mice. Parasite Immunology, 33(2), 95-103. https://doi.org/10.1111/j.1365-3024.2010.01253.x
Kim, T. W., Hung, C.-F., Boyd, D. A. K., He, L., Lin, C.-T., Kaiserman, D., Bird, P. I., & Wu, T.-C. (2004). Enhancement of DNA vaccine potency by coadministration of a tumor antigen gene and DNA encoding serine protease Inhibitor-6. Cancer Research, 64(1), 400-405. https://doi.org/10.1158/0008-5472.CAN-03-1475
Kumari, S., Samant, M., Misra, P., Khare, P., Sisodia, B., Shasany, A. K., & Dube, A. (2008). Th1-stimulatory polyproteins of soluble Leishmania donovani promastigotes ranging from 89.9 to 97.1kDa offers long-lasting protection against experimental visceral leishmaniasis. Vaccine, 26(45), 5700-5711. https://doi.org/10.1016/j.vaccine.2008.08.021
Kushawaha, P. K., Gupta, R., Sundar, S., Sahasrabuddhe, A. A., & Dube, A. (2011). Elongation Factor-2, a Th1 Stimulatory Protein of Leishmania donovani , Generates Strong IFN-γ and IL-12 Response in Cured Leishmania -Infected Patients/Hamsters and Protects Hamsters against Leishmania Challenge. The Journal of Immunology, 187(12), 6417-6427. https://doi.org/10.4049/jimmunol.1102081
Kushawaha, P. K., Gupta, R., Tripathi, C. D. P., Sundar, S., & Dube, A. (2012). Evaluation of Leishmania donovani Protein Disulfide Isomerase as a Potential Immunogenic Protein/Vaccine Candidate against Visceral Leishmaniasis. PLoS ONE, 7(4), e35670. https://doi.org/10.1371/journal.pone.0035670
Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680-685. https://doi.org/10.1038/227680a0
Lei nº 11.794, de 8 de outubro de 2008. (2008). Regulamenta o inciso VII do § 1º do art. 225 da Constituição Federal, estabelecendo procedimentos para o uso científico de animais; revoga a Lei nº 6.638, de 8 de maio de 1979; e dá outras providências. Diário Oficial da União. https://legis.senado.leg.br/norma/582216
Lima, H. C., Bleyenberg, J. A., & Titus, R. G. (1997). A simple method for quantifying Leishmania in tissues of infected animals. Trends in Parasitology, 13(2), 80-82. https://doi.org/10.1016/S0169-4758(96)40010-2
Lorenzen, A., & Kennedy, S. W. (1993). A Fluorescence-Based Protein Assay for use with a Microplate Reader. Analytical Biochemistry, 214(1), 346-348. https://doi.org/10.1006/abio.1993.1504
Maasho, K., Satti, I., Nylén, S., Guzman, G., Koning, F., & Akuffo, H. (2000). A Leishmania homologue of receptors for activated C‐Kinase (LACK) induces both Interferon‐γ and Interleukin‐10 in natural killer cells of healthy blood donors. The Journal of Infectious Diseases, 182(2), 570-578. https://doi.org/10.1086/315725
Machado, P. A., Gomes, P. S., Carneiro, M. P. D., Midlej, V., Coimbra, E. S., & Matos-Guedes, H. L. (2022). Effects of a Serine Protease Inhibitor N-p-Tosyl-L-phenylalanine Chloromethyl Ketone (TPCK) on Leishmania amazonensis and Leishmania infantum. Pharmaceutics, 14(7), 1373. https://doi.org/10.3390/pharmaceutics14071373
Magalhães, A., Carvalho, L. P., Costa, R., Pita, M. S., Cardoso, T. M., Machado, P. R. L., Carvalho, E. M., Arruda, S., & Carvalho, A. M. (2021). Anti-Leishmania IgG is a marker of disseminated leishmaniasis caused by Leishmania braziliensis. International Journal of Infectious Diseases, 106, 83-90. https://doi.org/10.1016/j.ijid.2021.02.016
Matos-Guedes, H. L., Pinheiro, R. O., Chaves, S. P., De-Simone, S. G., & Rossi-Bergmann, B. (2010). Serine proteases of Leishmania amazonensis as immunomodulatory and disease-aggravating components of the crude LaAg vaccine. Vaccine, 28(33), 5491-5496. https://doi.org/10.1016/j.vaccine.2010.04.109
Mayerova, D., Parke, E. A., Bursch, L. S., Odumade, O. A., & Hogquist, K. A. (2004). Langerhans Cells Activate Naive Self-Antigen-Specific CD8 T Cells in the Steady State. Immunity, 21(3), 391-400. https://doi.org/10.1016/j.immuni.2004.07.019
Morgado-Díaz, J. A., Silva-Lopez, R. E., Alves, C. R., Soares, M. J., Corte-Real, S., & De Simone, S. G. (2005). Subcellular localization of an intracellular serine protease of 68 kDa in Leishmania (Leishmania) amazonensis promastigotes. Memórias do Instituto Oswaldo Cruz, 100(4), 377-383. https://doi.org/10.1590/S0074-02762005000400007
Mottram, J. C., Souza, A. E., Hutchison, J. E., Carter, R., Frame, M. J., & Coombs, G. H. (1996). Evidence from disruption of the lmcpb gene array of Leishmania mexicana that cysteine proteinases are virulence factors. Proceedings of the National Academy of Sciences, 93(12), 6008-6013. https://doi.org/10.1073/pnas.93.12.6008
Nandan, D., Daubenberger, C., Mpimbaza, G., & Pearson, T. W. (1994). A rapid, single-step purification method for immunogenic members of the hsp 70 family: validation and application. Journal of Immunological Methods, 176(2), 255-263. https://doi.org/10.1016/0022-1759(94)90319-0
Pearson, R. D., & Steigbigel, R. T. (1981). Phagocytosis and killing of the protozoan Leishmania donovani by human polymorphonuclear leukocytes. Journal of Immunology, 127(4), 1438-1443. https://pubmed.ncbi.nlm.nih.gov/7276565/
Pranai, J., Qureshi, R., Iqbal, A., Sagurthi, S. R., & Qureshi, I. A. (2018). Leishmania donovani PP2C: Kinetics, structural attributes and in vitro immune response. Molecular and Biochemical Parasitology, 223, 37-49. https://doi.org/10.1016/j.molbiopara.2018.06.005
Rico, A. I., Gironès, N., Fresno, M., Alonso, C., & Requena, J. M. (2002). The heat shock proteins, Hsp70 and Hsp83, of Leishmania infantum are mitogens for mouse B cells. Cell Stress & Chaperones, 7(4), 339-346. https://doi.org/10.1379/1466-1268(2002)007<0339:thspha>2.0.co;2
Rostamian, M., Sohrabi, S., Kavosifard, H., & Niknam, H. M. (2017). Lower levels of IgG1 in comparison with IgG2a are associated with protective immunity against Leishmania tropica infection in BALB/c mice. Journal of Microbiology, Immunology and Infection, 50(2), 160-166. https://doi.org/10.1016/j.jmii.2015.05.007
Sabur, A., Bhowmick, S., Chhajer, R., Ejazi, S. A., Didwania, N., Asad, M., Bhattacharyya, A., Sinha, U., & Ali, N. (2018). Liposomal Elongation Factor-1α Triggers Effector CD4 and CD8 T Cells for induction of long-lasting protective immunity against Visceral Leishmaniasis. Frontiers in Immunology, 9. https://doi.org/10.3389/fimmu.2018.00018
Schilling, S., & Glaichenhaus, N. (2001). T Cells that react to the immunodominant Leishmania major LACK antigen prevent early dissemination of the parasite in susceptible BALB/c Mice. Infection and Immunity, 69(2), 1212-1214. https://doi.org/10.1128/IAI.69.2.1212-1214.2001
Silva, V. M. G., Larangeira, D. F., Oliveira, P. R. S., Sampaio, R. B., Suzart, P., Nihei, J. S., Teixeira, M. C. A., Mengel, J. O., dos-Santos, W. L. C., & Pontes-de-Carvalho, L. (2011). Enhancement of Experimental Cutaneous Leishmaniasis by Leishmania Molecules Is Dependent on Interleukin-4, Serine Protease/Esterase Activity, and Parasite and Host Genetic Backgrounds. Infection and Immunity, 79(3), 1236-1243. https://doi.org/10.1128/IAI.00309-10
Silva-Lopez, R. E., & Giovanni-De-Simone, S. (2004). Leishmania (Leishmania) amazonensis: purification and characterization of a promastigote serine protease. Experimental Parasitology, 107(3-4), 173-182. https://doi.org/10.1016/j.exppara.2004.05.002
Teixeira, M. C. A., Santos, R. J., Sampaio, R. B., Pontes-de-Carvalho, L., & dos-Santos, W. L. C. (2002). A simple and reproducible method to obtain large numbers of axenic amastigotes of different Leishmania species. Parasitology Research, 88(11), 963-968. https://doi.org/10.1007/s00436-002-0695-3
Teixeira, M. C. A., Oliveira, G. G. S., Santos, P. O. M., Bahiense, T. C., Silva, V. M. G., Rodrigues, M. S., Larangeira, D. F., dos-Santos, W. L. C., & Pontes-de-Carvalho, L. C. (2011). An experimental protocol for the establishment of dogs with long-term cellular immune reactions to Leishmania antigens. Memórias do Instituto Oswaldo Cruz, 106(2), 182–189. https://doi.org/10.1590/S0074-02762011000200011
Weiss, R., Scheiblhofer, S., Thalhamer, J., Bickert, T., Richardt, U., Fleischer, B., & Ritter, U. (2007). Epidermal inoculation of Leishmania-antigen by gold bombardment results in a chronic form of leishmaniasis. Vaccine, 25(1), 25-33. https://doi.org/10.1016/j.vaccine.2006.07.044
World Health Organization [WHO]. (2023). The Global Health Observatory. Leishmaniasis. https://www.who.int/data/gho/data/themes/topics/topic-details/GHO/leishmaniasis.
DECLARATION OF ORIGINALITY AND COPYRIGHTS
I Declare that current article is original and has not been submitted for publication, in part or in whole, to any other national or international journal.
The copyrights belong exclusively to the authors. Published content is licensed under Creative Commons Attribution 4.0 (CC BY 4.0) guidelines, which allows sharing (copy and distribution of the material in any medium or format) and adaptation (remix, transform, and build upon the material) for any purpose, even commercially, under the terms of attribution.
Read this link for further information on how to use CC BY 4.0 properly.