Proteomic profiling: A tool to unlock the potential of Nigerian indigenous goats

  • Adeyinka Oye Akintunde Babcock University https://orcid.org/0000-0002-6013-0902
  • Adenike Abosede Adebisi Babcock University
  • Lois Chidinma Ndubuisi-Ogbonna Babcock University
  • Oluwafunmike Omowunmi Oyekale Babcock University
  • Samson Oluwole Oyewumi Babcock University
  • Rufus Olusegun Animashaun Babcock University
Keywords: Breeds; diversity; improvement; indigenous; proteome.

Abstract

Nigeria possesses a rich diversity of indigenous goats (predominantly the West African Dwarf, Sokoto Red and Sahel goats), that are superbly adapted to local environment but often underperform compared to improved breeds. Proteomic profiling emerges as a powerful avenue to bridge this gap. This approach examines the protein content of an organism, providing insights into its genetic potential. In the case of Nigerian indigenous goats, this method can reveal valuable information about their unique traits, disease resistance, and potential for improvement through selective breeding.  This review underscores how integrating proteomic profiling into breeding programs can unlock genetic potential of Nigerian indigenous goats. It is however concluded that with the use of technologies involved in proteomic profiling, strategies can be formulated for Nigerian indigenous goat breeds to improve their productivity, health, and product quality. With strategic application of these technologies, supported by ongoing research and investment, proteomics can empower Nigerian goat farmers to tap into the vast potential of their indigenous breeds thus offering a powerful approach to unlocking the genetic diversity and adaptive potential of Nigerian indigenous goats. Ultimately, proteomic profiling can boost productivity, animal health and product quality, empowering Nigerian goat producers to leverage the full spectrum of their breeds’ adaptive diversity.

Downloads

Download data is not yet available.

References

Adam H., Atengdem P. B., & Al-Hassan S. (2010). Innovations adoption levels of small ruminant farmers in Tolon-Kumbungu district of Ghana: The role of farmer socio-economic characteristics. Ghana Journal of Development Studies, 7(2), 30-46. https://doi.org/10.4314/gjds.v7i2.66880

Adamu, H., Ma’aruf, B. S., Haruna, K., Salihu, A. M., & Sani, M. G. (2021). Quantitative traits of indigenous breeds of goat in Nigeria: A review. Nigerian Journal of Animal Production, 48(1), 786–790. https://mail.njap.org.ng/index.php/njap/article/download/5462/4161/9027

Ajala M. K, Lamidi O. S, & Otaru S. M. (2008). Peri-urban small ruminant production in Northern Guinea Savanna, Nigeria. Asian Journal of Animal and Veterinary Advances, 3(3), 138-146. https://doi.org/10.3923/ajava.2008.138.146

Akintunde, A. O., Mustofa, I., Ndubuisi-Ogbonna, L. C., Oyekale, O. O., & Shobo, B. A. (2024). Exploring the genetic diversity: A review of germplasm in Nigerian indigenous goat breeds. Small Ruminant Research, 234. https://doi.org/10.1016/j.smallrumres.2024.107236

Al-Amrani, S., Al-Jabri, Z., Al-Zaabi, A., Alshekaili, J., & Al-Khabori, M. (2021). Proteomics: Concepts and applications in human medicine. World Journal of Biological Chemistry, 12(5), 57–69. https://doi.org/10.4331/wjbc.v12.i5.57

ALKaisy, Q. H., Al-Saadi, J. S., Al-Rikabi, A. K. J., Altemimi, A. B., Hesarinejad, M. A., & Abedelmaksoud, T. G. (2023). Exploring the health benefits and functional properties of goat milk proteins. Food Science and Nutrition, 11(10), 5641–5656. https://doi.org/10.1002/fsn3.3531

Aslam, B., Basit, M., Nisar, M. A., Khurshid, M., & Rasool, M. H. (2017). Proteomics: technologies and their applications. Journal of Chromatographic Science, 55(2), 182–196. https://doi.org/10.1093/chromsci/bmw167

Bamaiyi, P. H. (2013). Factors militating against animal production in Nigeria. International Journal of Livestock Research, 3(2), 54-66. https://scispace.com/pdf/factors-militating-against-animal-production-in-nigeria-2zd6ycvyxy.pdf

Beeton-Kempen, N. (2020). Proteomics: Principles, techniques and applications. Technology Networks. https://www.technologynetworks.com/proteomics/articles/proteomics-principles-techniques-and-applications-343804

Bergendahl, L. T., Gerasimavicius, L., Miles, J., Macdonald, L., Wells, J. N., Welburn, J. P. I., & Marsh, J. A. (2019). The role of protein complexes in human genetic disease. Protein Science, 28(8), 1400–1411. https://doi.org/10.1002/pro.3667

Butler, G. S., Dean, R. A., Morrison, C. J., & Overall, C. M. (2010). Identification of cellular MMP substrates using quantitative proteomics: isotope-coded affinity tags (ICAT) and isobaric tags for relative and absolute quantification (iTRAQ). Methods in Molecular Biology, 622, 451–470. https://doi.org/10.1007/978-1-60327-299-5_26

Butswat, I. S. R. (1998). Relationship between chest girth and live weight in Tankasa sheep and Red Sokoto goats: Validation tests of prediction equations. Pertanika Journal of Tropical Agricultural Science, 21(2), 129. http://www.pertanika.upm.edu.my/resources/files/Pertanika%20PAPERS/JTAS%20Vol.%2021%20(2)%20Sep.%201998/10%20PAGE%20129-132.pdf

Carpenter, S., & Conlan, R. S. (2021). Clinical functional genomics. Cancers, 13(18). https://doi.org/10.3390/cancers13184627

Chen, D., Li, X. Y., Zhao, X., Qin, Y. S., Zhang, X. X., Li, J., Wang, J. M., & Wang, C. F. (2019). Proteomics and microstructure profiling of goat milk protein after homogenization. Journal of Dairy Science, 102(5), 3839-3850. https://doi.org/10.3168/jds.2018-15363

Cho, W.C. (2007). Proteomics technologies and challenges. Genomics, Proteomics and Bioinformatics, 5(2), 77–85. https://doi.org/10.1016/S1672-0229(07)60018-7

Cutler, P. (2003). Protein arrays: The current state‐of‐the‐art. Proteomics, 3(1), 3-18. https://doi.org/10.1002/pmic.200390007

Daramola, J. O., Adeloye, A. A., Akintunde, A. O., Imam, T. K., Iyasere, O. S., & Sobayo, R. A. (2010). Effect of Uromaiz on sperm characteristics in West African Dwarf bucks. Journal of Agricultural Science and Environment, 10(2), 59-67. https://scispace.com/pdf/effect-of-uromaiz-on-sperm-characteristics-in-west-african-31z5vp22c7.pdf

Delfarah, A., Hartel, N. G., Zheng, D., Yang, J., & Graham, N. A. (2021). Identification of a proteomic signature of senescence in primary human mammary epithelial cells. Journal of Proteome Research, 20(11), 5169-5179. https://doi.org/10.1021/acs.jproteome.1c00659

Di Gerlando, R., Tolone, M., Sutera, A. M., Monteleone, G., Portolano, B., Sardina, M. T., & Mastrangelo, S. (2019). Variation of proteomic profile during lactation in Girgentana goat milk: a preliminary study. Italian Journal of Animal Science, 18(1), 88–97. https://doi.org/10.1080/1828051X.2018.1483749

Doherty, M. K., McLean, L., Hayter, J. R., Pratt, J. M., Robertson, D. H. L., El Shafei, A., Gaskell, S. J., & Beynon, R. J. (2004). The proteome of chicken skeletal muscle: Changes in soluble protein expression during growth in a layer strain. Proteomics, 4(7), 2082–2093. https://doi.org/10.1002/pmic.200300716

Duku, S., Price, L. L., van der Zijpp, A. & Tobi, H. (2011). Influence of male or female headship on the keeping and care of small ruminants: The case of the transitional zone of Ghana. Livestock Research for Rural Development, 23(1), 1-10. https://edepot.wur.nl/159710

Feussner, I., & Polle, A. (2015). What the transcriptome does not tell—proteomics and metabolomics are closer to the plants’ patho-phenotype. Current Opinion in Plant Biology, 26, 26-31. https://doi.org/10.1016/j.pbi.2015.05.023

Food and Agriculture Organization of the United Nations. (2007). The State of the World’s Animal Genetic Resources for Food and Agriculture.

Hage, D. S., Anguizola, J. A., Bi, C., Li, R., Matsuda, R., Papastavros, E., Pfaunmiller, E., Vargas, J., & Zheng, X. (2012). Pharmaceutical and biomedical applications of affinity chromatography: Recent trends and developments. Journal of Pharmaceutical and Biomedical Analysis, 69, 93-105. https://doi.org/10.1016/j.jpba.2012.01.004

Haynes, P. A., & Roberts, T. H. (2007). Subcellular shotgun proteomics in plants: Looking beyond the usual suspects. Proteomics, 7(16), 2963-2975. https://doi.org/10.1002/pmic.200700216

Holman, J. D., Dasari, S., & Tabb, D. L. (2013). Informatics of protein and posttranslational modification detection via shotgun proteomics. In M. Zhou & T. Veenstra (Eds.), Proteomics for Biomarker Discovery, (Vol. 1002, pp. 167–179). Humana Press. https://doi.org/10.1007/978-1-62703-360-2_14

Jesuyon, O. M., Boluwaji, O., Orunmuyi, M., Aganga, A. A., & Ogunjimi, S. I. (2023). Assessment of management and breeding practices among indigenous goat farmers in a tropical humid forest zone. In Goat Science-Environment, Health and Economy. IntechOpen. https://doi.org/10.5772/intechopen.99141

Jungbauer, A., & Hahn, R. (2009). Ion-exchange chromatography. Methods in Enzymology. 463, 349–371. https://doi.org/10.1016/S0076-6879(09)63022-6

Kadri, K. (2019). Polymerase chain reaction (PCR): Principle and applications. In Synthetic Biology-New Interdisciplinary Science. IntechOpen. https://doi.org/10.5772/intechopen.86491

Karbo, N., Bruce, J., & Otchere, E. (1999). The role of livestock in sustaining soil fertility in northern Ghana. ILEIA Newsletter, 15 (1/2), 49-50. http://edepot.wur.nl/79858

Kjaersgard, I. V. H., Norrelykke, M. R., & Jessen, F. (2006). Changes in cod muscle proteins during frozen storage revealed by proteome analysis and multivariate data analysis. Proteomics, 6(5), 1606–1618. https://doi.org/10.1002/pmic.200500252

Kurien, B. T., & Scofield, R. H. (2006). Western blotting. Methods, 38(4), 283-293. https://doi.org/10.1016/j.ymeth.2005.11.007

Lebbie, S. H. B. (2004). Goats under household conditions. Small Ruminant Research, 51(2), 131-136. https://doi.org/10.1016/j.smallrumres.2003.08.015

Lequin, R. M. (2005). Enzyme immunoassay (EIA)/enzyme-linked immunosorbent assay (ELISA). Clinical Chemistry, 51(12), 2415-2418. https://doi.org/10.1373/clinchem.2005.051532

Liotta, L.A., Espina, V., Mehta, A.I., Calvert, V., Rosenblatt, K., Geho, D., Munson, P.J., Young, L., Wulfkuhle, J., & Petricoin, E.F. (2003). Protein microarrays: Meeting analytical challenges for clinical applications. Cancer Cell, 3(4), 317-325. https://doi.org/10.1016/S1535-6108(03)00086-2

Martins, R. P., Collado-Romero, M., Martinez-Gomariz, M., Carvajal, A., Gil, C., Lucena, C., Moreno, A., & Garrido, J. J. (2012). Proteomic analysis of porcine mesenteric lymph-nodes after Salmonella typhimurium infection. Journal of Proteomics, 75(14), 4457–4470. https://doi.org/10.1016/j.jprot.2012.03.045

Mdladla, K., Dzomba, E. F., & Muchadeyi, F. C. (2017). The potential of landscape genomics approach in the characterization of adaptive genetic diversity in indigenous goat genetic resources: A South African perspective. Small Ruminant Research, 150, 87-92. https://doi.org/10.1016/j.smallrumres.2017.03.015

Minden, J. S. (2012). Two-Dimensional Difference Gel Electrophoresis. In: B. Kurien, R. Scofield, (Eds.), Protein Electrophoresis: Methods in Molecular Biology, (Vol. 869, pp. 287-304). Humana Press. https://doi.org/10.1007/978-1-61779-821-4_24

Navamniraj, K. N., Sivasabari, K., Indu, J. A., Krishnan, D., Anjali, M. R., Akhil, P. R., Pran, M., Nainu, F., Praveen, S. V., Singh, P., & Chopra, H. (2023). Beneficial impacts of goat milk on the nutritional status and general well-being of human beings: Anecdotal evidence. Journal of Experimental Biology and Agricultural Sciences, 11(1), 1–15. https://doi.org/10.18006/2023.11(1).1.15

Ngere, L. O., Adu, I. F., & Okubanjo, I. O. (1984). The indigenous goats of Nigeria. Animal Genetic Resources, 3, 1-9. https://doi.org/10.1017/S1014233900000109

Nwachukwu, C. U., & Berekwu, N. (2020). Production and management of goat rearing in rural areas of Ezinihitte Mbaise, Imo State, Nigeria. Agro-Science, 19(3), 25-31. https://doi.org/10.4314/as.v19i3.5

Oguoma, N. N. O. (2003). Financing small ruminant operations along gender lines in Imo State, Nigeria. Journal of Agriculture and Social Research, 3(1), 13-28. https://doi.org/10.4314/jasr.v3i1.2783

Ojo, O. A., Akpa, G. N., Orunmuyi, M., & Adeyinka, I. A. (2015). Genetic differentiation among Nigerian Indigenous goat populations. Journal of Agricultural Science, 7(11), 39-47. https://doi.org/10.5539/jas.v7n11p39

Ojo, O. A., Akpa, G. N., Orunmuyi, M., Adeyinka, I. A., Kabir, M., & Alphonsus, C. (2018). Genetic analysis of Nigerian indigenous goat populations using microsattelite markers. Iranian Journal of Applied Animal Science, 8(2), 287-294.

Okpeku, M., Peters, S. O., Ozoje, M. O., Adebambo, O. A., Agaviezor, B. O., O'Neill, M. J., & Imumorin, I. G. (2011). Preliminary analysis of microsatellite-based genetic diversity of goats in southern Nigeria. Animal Genetic Resources, 49, 33-41. https://doi.org/10.1017/S207863361100035X

Ong, S. E., Blagoev, B., Kratchmarova, I., Kristensen, D. B., Steen, H., Pandey, A., & Mann, M. (2002). Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Molecular and Cellular Proteomics, 1(5), 376–386. https://doi.org/10.1074/mcp.m200025-mcp200

Pandey, A., & Mann, M. (2000). Proteomics to study genes and genomes. Nature, 405(6788), 837-846. https://doi.org/10.1038/35015709

Rasko, D.A., & Mongodin, E.F. (2005). The first decade of microbial genomics: What have we learned and where are we going next?. Genome Biology, 6. https://doi.org/10.1186/gb-2005-6-9-341

Rexroad, C., Vallet, J., Matukumalli, L. K., Reecy, J., Bickhart, D., Blackburn, H., Boggess, M., Cheng, H., Clutter, A., Cockett, N., Ernst, C., Fulton, J. E., Liu, J., Lunney, J., Neibergs, H., Purcell, C., Smith, T. P. L., Sonstegard, T., Taylor, J., Telugu, B., … Wells, K. (2019). Genome to phenome: Improving animal health, production, and well-being – A new USDA blueprint for animal genome research 2018–2027. Frontiers in Genetics, 10. https://doi.org/10.3389/fgene.2019.00327

Schulz, T. C., Swistowska, A. M., Liu, Y., Swistowski, A., Palmarini, G., Brimble, S. N., Sherrer, E., Robins, A. J., Rao, M. S., & Zeng, X. (2007). A large-scale proteomic analysis of human embryonic stem cells. BMC Genomics, 8. https://doi.org/10.1186/1471-2164-8-478

Shekari, F., Baharvand, H., & Salekdeh, G. H. (2014). Organellar proteomics of embryonic stem cells. Advances in Protein Chemistry and Structural Biology, 95, 215-230. http://dx.doi.org/10.1016/B978-0-12-800453-1.00007-5

Souza, C. E., Rego, J. P., Lobo, C. H., Oliveira, J. T., Nogueira, F. C., Domont, G. B., Fioramonte, M., Gozzo, F. C., Moreno, F. B., Monteiro-Moreira, A. C., Figueiredo, J. R., & Moura, A. A. (2012). Proteomic analysis of the reproductive tract fluids from tropically-adapted Santa Ines rams. Journal of Proteomics, 75(14), 4436–4456. https://doi.org/10.1016/j.jprot.2012.05.039

Stahl-Zeng, J., Lange, V., Ossola, R., Eckhardt, K., Krek, W., Aebersold, R., & Domon, B. (2007). High sensitivity detection of plasma proteins by multiple reaction monitoring of N-glycosites. Molecular and Cellular Proteomics, 6(10), 1809-1817. https://doi.org/10.1074/mcp.M700132-MCP200

Steel, L.F., Haab, B.B., & Hanash, S.M. (2005). Methods of comparative proteomic profiling for disease diagnostics. Journal of Chromatography B, 815(1-2), 275–284. https://doi.org/10.1016/j.jchromb.2004.10.072

Toscano, M., de Grandi, R., & Drago, L. (2017). Proteomics: the new era of microbiology. Microbiologia Medica, 32(4). http://dx.doi.org/10.4081/mm.2017.7348

Verrills, N. M. (2006). Clinical proteomics: Present and future prospects. The Clinical Biochemist Reviews, 27(2), 99–116. https://pubmed.ncbi.nlm.nih.gov/17077880

Voedisch, B., & Thie, H. (2010). Size exclusion chromatography. In Antibody Engineering. Springer. (pp. 607–612). https://doi.org/10.1007/978-3-642-01144-3_38

Yates, J.R. (2013). The revolution and evolution of shotgun proteomics for large-scale proteome analysis. Journal of the American Chemical Society, 135(5), 1629–1640. https://doi.org/10.1021/ja3094313

Yoithapprabhunath, T.R., Nirmal, R.M., Santhadevy, A., Anusushanth, A., Charanya, D., Chinthu, K. S., & Yamunadevi, A. (2015). Role of proteomics in physiologic and pathologic conditions of dentistry: Overview. Journal of Pharmacy and Bioallied Sciences, 7(Suppl 2), S344-S349. https://doi.org/10.4103/0975-7406.163448

Zhao, Q., Li, K., Jiang, K., Yuan, Z., Xiao, M., Wei, G., Zheng, W., Wang, X., & Huang, A. (2023). Proteomic approach-based comparison of metabolic pathways and functional activities of whey proteins derived from Guishan and Saanen goat milk. Journal of Dairy Science, 106(4), 2247-2260. https://doi.org/10.3168/jds.2022-22404

Published
2025-11-25
How to Cite
Akintunde, A. O., Adebisi, A. A., Ndubuisi-Ogbonna, L. C., Oyekale, O. O., Oyewumi, S. O., & Animashaun, R. O. (2025). Proteomic profiling: A tool to unlock the potential of Nigerian indigenous goats . Acta Scientiarum. Biological Sciences, 47(1), e72013. https://doi.org/10.4025/actascibiolsci.v47i1.72013
Section
Biotechnology

 

0.6
2019CiteScore
 
 
31st percentile
Powered by  Scopus

 

 

0.6
2019CiteScore
 
 
31st percentile
Powered by  Scopus