Impact of carrion decomposition on topsoil chemistry and their eco-forensic implications in a Southern Nigerian ecosystem

  • Oghenefego Michael Adheke Southern Delta University https://orcid.org/0000-0002-6306-279X
  • Loveday Ese Oghenemavwe University of Port Harcourt
  • Darlington Nnamdi Onyejike Nnamdi Azikiwe University
  • Josiah Soipiriala Hart University of Port Harcourt
  • Bassey Udom University of Port Harcourt
  • Terkuma Fredrick Ujoh University of Port Harcourt
Keywords: Post-mortem interval; taphonomy; soil chemistry; carrion decomposition; Port Harcourt.

Abstract

Post-mortem interval (PMI) is the period since death of human or animal remains upon discovery. Studying the soil chemical properties could provide a taphonomic approach of carrion decay. The present study aimed to examine the relationships between soil chemical properties and decomposition timeline of remains at both dry and wet seasons in a Southern Nigerian (Port Harcourt) ecosystem. Using an observational, analytical design during the dry (December 2022 to February 2023) and wet season (3rd to the 18th of April 2023), healthy pigs (Sus scrofa domesticus) weighing between 40 – 60 kg were used. Upon euthanization, pigs were buried at different cadaver decomposition islands (CDIs) within the site and at weekly intervals. Pig carrion decomposition was scored quantitatively using the Keough et al. total body score (TBS) method based on the observed morphological appearance of selected body regions. Soil samples were collected, air-dried, sieved, and analyzed for chemical properties using standard analytical procedures. Statistical differences in soil chemical characteristics between post-mortem intervals were performed using both one-way analysis of variance (ANOVA) and Post Hoc tests. From the results, pH levels of dry and wet season gravesoil samples differed significantly at various PMIs (p < 0.05) in comparison with control soil samples. Calcium and magnesium levels were increased on days 7 (mean TBS of 16.3) and 14 (mean TBS of 21.3) while potassium concentrations elevated significantly at both days 14 in both seasons. There were significant increases in sodium concentration on day 7 (at a mean TBS of 19.3) for the wet season. Exchangeable acidity (EA) and effective cation exchange capacity (ECEC) values increased significantly in both study periods. The study showed significant associations between the post-mortem intervals of study pig carcasses and variations in chemistry of the gravesoil samples.

Downloads

Download data is not yet available.

References

Abera, G., Wolde-Meskel, E., & Bakken, L. R. (2012). Carbon and nitrogen mineralization dynamics in different soils of the tropics amended with legume residues and contrasting soil moisture contents. Biology and Fertility of Soils, 48(1), 51-66. https://doi.org/10.1007/s00374-011-0607-8

Adheke, O. M., & Oghenemavwe, L. E. (2023). Review of Estimation Models for Post Mortem Interval using Total Body Score and Accumulated Degree Days for Different Geographical Regions. Asian Journal of Advance Research and Reports, 17(11), 43-56. https://doi.org/10.9734/ajarr/2023/v17i11553

Aitkenhead-Peterson, J. A., Alexander, M. B., Bytheway, J. A., Carter, D. O., & Wescott, D. J. (2015). Applications of soil chemistry in forensic entomology. Forensic entomology: International dimensions and frontiers, 283. https://doi.org/10.1201/b18156-27

Aitkenhead-Peterson, J. A., Owings, C. G., Alexander, M. B., Larison, N., & Bytheway, J. A. (2012). Mapping the lateral extent of human cadaver decomposition with soil chemistry. Forensic Science International, 216(1-3), 127-134. https://doi.org/10.1016/j.forsciint.2011.09.007

Anthony, M. A., Crowther, T. W., Maynard, D. S., van den Hoogen, J., & Averill, C. (2020). Distinct assembly processes and microbial communities constrain soil organic carbon formation. One Earth, 2(4), 349-360. https://doi.org/10.1016/j.oneear.2020.03.006

Ardahanlioglu, O., Oztas, T., Evren, S., Yilmaz, H., & Yildirim, Z. N. (2003). Spatial variability of exchangeable sodium, electrical conductivity, soil pH and boron content in salt-and sodium-affected areas of the Igdir plain (Turkey). Journal of Arid Environments, 54(3), 495-503. https://doi.org/10.1006/jare.2002.1073

Averill, C., & Waring, B. (2018). Nitrogen limitation of decomposition and decay: how can it occur?. Global Change Biology, 24(4), 1417-1427. https://doi.org/10.1111/gcb.13980

Benninger, L. A., Carter, D. O., & Forbes, S. L. (2008). The biochemical alteration of soil beneath a decomposing carcass. Forensic Science International, 180(2-3), 70-75. https://doi.org/10.1016/j.forsciint.2008.07.001

Camenzind, T., Hättenschwiler, S., Treseder, K. K., Lehmann, A., & Rillig, M. C. (2018). Nutrient limitation of soil microbial processes in tropical forests. Ecological Monographs, 88(1), 4-21. https://doi.org/10.1002/ecm.1279

Carter, D. O., & Tibbett, M. (2003). Taphonomic mycota: fungi with forensic potential. Journal of Forensic Sciences, 48(1), JFS2002169. https://doi.org/10.1520/jfs2002169

Carter, D. O., Yellowlees, D., & Tibbett, M. (2007). Cadaver decomposition in terrestrial ecosystems. Naturwissenschaften, 94(1), 12-24. https://doi.org/10.1007/s00114-006-0159-1

Certini, G. (2005). Effects of fire on properties of forest soils: a review. Oecologia, 143(1), 1-10. https://doi.org/10.1007/s00442-004-1788-8

Dhaliwal, S. S., Naresh, R. K., Mandal, A., Singh, R., & Dhaliwal, M. K. (2019). Dynamics and transformations of micronutrients in agricultural soils as influenced by organic matter build-up: A review. Environmental and Sustainability Indicators, 1, 100007. https://doi.org/10.1016/j.indic.2019.100007

Dupras, T. L., Schultz, J. J., Wheeler, S. M., & Williams, L. J. (2005). Forensic recovery of human remains: archaeological approaches. CRC Press. https://doi.org/10.1201/b11275

Fancher, J. P., Aitkenhead-Peterson, J. A., Farris, T., Mix, K., Schwab, A. P., Wescott, D. J., & Hamilton, M. D. (2017). An evaluation of soil chemistry in human cadaver decomposition islands: Potential for estimating postmortem interval (PMI). Forensic Science International, 279, 130-139. https://doi.org/10.1016/j.forsciint.2017.08.002

Fatubarin, A., & Olojugba, M. R. (2014). Effect of rainfall season on the chemical properties of the soil of a Southern Guinea Savanna ecosystem in Nigeria. Journal of Ecology and the Natural Environment, 6(4), 182-189. https://doi.org/10.5897/jene2013.0433

Fernández-Jalvo, Y., Scott, L., & Andrews, P. (2011). Taphonomy in palaeoecological interpretations. Quaternary Science Reviews, 30(11-12), 1296-1302. https://doi.org/10.1016/j.quascirev.2010.07.022

Fitzpatrick, R. W. (2008). Nature, distribution, and origin of soil materials in the forensic comparison of soils. In Soil analysis in forensic taphonomy (pp. 13-40). CRC Press. https://doi.org/10.1201/9781420069921.ch1

Forbes, S. L., Dent, B. B., & Stuart, B. H. (2005). The effect of soil type on adipocere formation. Forensic Science International, 154(1), 35-43. https://doi.org/10.1016/j.forsciint.2004.09.108

Gondek, K., Mierzwa-Hersztek, M., Kopeć, M., Sikora, J., Głąb, T., & Szczurowska, K. (2019). Influence of biochar application on reduced acidification of sandy soil, increased cation exchange capacity, and the content of available forms of K, Mg, and P. Polish Journal of Environmental Studies, 28(1), 1-9. https://doi.org/10.15244/pjoes/81688

Heald, W. R. (1965). Calcium and magnesium. Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties, 9, 999-1010. https://doi.org/10.1097/00010694-196511000-00020

Heo, C. C., Tomberlin, J. K., & Aitkenhead‐Peterson, J. A. (2021). Soil chemistry dynamics of Sus scrofa carcasses with and without delayed Diptera colonization. Journal of Forensic Sciences, 66(3), 947-959. https://doi.org/10.1111/1556-4029.14645

Irish, L., Rennie, S. R., Parkes, G. M. B., & Williams, A. (2019). Identification of decomposition volatile organic compounds from surface-deposited and submerged porcine remains. Science & Justice, 59(5), 503-515. https://doi.org/10.1016/j.scijus.2019.03.007

Kettler, T. A., Doran, J. W., & Gilbert, T. L. (2001). Simplified method for soil particle‐size determination to accompany soil‐quality analyses. Soil Science Society of America Journal, 65(3), 849-852. https://doi.org/10.2136/sssaj2001.653849x

Knudsen, D., Petterson, A., & Pratt, P. F. (1992). Lithium, sodium and potassium. In D. L. Page (Ed.), Methods of Soil Analysis. Part 2 Chemical and Microbiological Properties (2nd ed., Vol. 9). American Society of Agronomy.

Kumar, A., Kumar, A., Bihari, B., & Qasmi, M. (2020). Soil fertility and mineral nutrition of plants. Current Research in Soil Fertility, 65, 23-35.

Kumari, N., & Mohan, C. (2021). Basics of clay minerals and their characteristic properties. Clay Clay Miner, 24(1), 1-29. https://doi.org/10.5772/intechopen.97672

McLean, E. O. (1982). Soil pH and lime requirement. Methods of Soil Analysis: Part 2 Chemical and microbiological properties, 9, 199-224. https://doi.org/10.2134/agronmonogr9.2.2ed.c12

Melis, C., Selva, N., Teurlings, I., Skarpe, C., Linnell, J. D., & Andersen, R. (2007). Soil and vegetation nutrient response to bison carcasses in Białowieża Primeval Forest, Poland. Ecological Research, 22(5), 807-813.

Meyer, J., Anderson, B., & Carter, D. O. (2013). Seasonal variation of carcass decomposition and gravesoil chemistry in a cold (Dfa) climate. Journal of Forensic Sciences, 58(5), 1175-1182. https://doi.org/10.1111/1556-4029.12169

Ng, J. F., Ahmed, O. H., Jalloh, M. B., Omar, L., Kwan, Y. M., Musah, A. A., & Poong, K. H. (2022). Soil nutrient retention and pH buffering capacity are enhanced by calciprill and sodium silicate. Agronomy, 12(1), 219. https://doi.org/10.3390/agronomy12010219

Obalum, S. E., Chibuike, G. U., Peth, S., & Ouyang, Y. (2017). Soil organic matter as sole indicator of soil degradation. Environmental Monitoring and Assessment, 189(4), 176. https://doi.org/10.1007/s10661-017-5881-y

Oliver, D. P., Bramley, R. G. V., Riches, D., Porter, I., & Edwards, J. (2013). Soil physical and chemical properties as indicators of soil quality in Australian viticulture. Australian Journal of Grape and Wine Research, 19(2), 129-139. https://doi.org/10.1111/ajgw.12016

Olojugba, M. R., & Fatubarin, A. R. (2015). Effect of seasonal dynamics on the chemical properties of the soil of a Northern Guinea savanna ecosystem in Nigeria. Journal of Soil Science and Environmental Management, 6(5), 100-107. https://doi.org/10.5897/jssem13.0413

Osborne, C. P., Charles‐Dominique, T., Stevens, N., Bond, W. J., Midgley, G., & Lehmann, C. E. (2018). Human impacts in African savannas are mediated by plant functional traits. New Phytologist, 220(1), 10-24. https://doi.org/10.1111/nph.15236

Oyebiyi, O. O., Ojetade, J. O., Muda, S. A., & Amusan, A. A. (2018). Comparative study of three methods of determining cation exchange capacity of three major soils in the rainforest region of Southwestern Nigeria. Communications in Soil Science and Plant Analysis, 49(18), 2338-2344. https://doi.org/10.1080/00103624.2018.1499768

Paudel, S., & Sah, J. P. (2003). Physiochemical characteristics of soil in tropical sal (Shorea robusta Gaertn.) forests in eastern Nepal. Himalayan Journal of Sciences, 1(2), 107-110. https://doi.org/10.3126/hjs.v1i2.207

Perrault, K. A., Stefanuto, P. H., Stuart, B. H., Rai, T., Focant, J. F., & Forbes, S. L. (2015). Detection of decomposition volatile organic compounds in soil following removal of remains from a surface deposition site. Forensic science, medicine, and pathology, 11(3), 376-387. https://doi.org/10.1007/s12024-015-9693-5

Provoost, S., Jones, M. L. M., & Edmondson, S. E. (2011). Changes in landscape and vegetation of coastal dunes in northwest Europe: a review. Journal of Coastal Conservation, 15(1), 207-226. https://doi.org/10.1007/s11852-009-0068-5

Qiu, H., Ge, T., Liu, J., Chen, X., Hu, Y., Wu, J., & Kuzyakov, Y. (2018). Effects of biotic and abiotic factors on soil organic matter mineralization: Experiments and structural modeling analysis. European Journal of Soil Biology, 84, 27-34. https://doi.org/10.1016/j.ejsobi.2017.12.003

Rhoades, J. D. (1982). Cation exchange capacity. Methods of soil analysis: Part 2 chemical and microbiological properties, 9, 149-157. https://doi.org/10.2134/agronmonogr9.2.2ed.c8

Salisu, N., Bunza, M. D. A., Shehu, K., & Illo, Z. Z. (2021). Phytosocial diversity and distribution of herbaceous species in dryland ecosystem of Kebbi, North-western Nigeria. IOSR Journal of Environmental Sciences, Toxicology and Food Technology, 15(7), 53-60.

Singh, K. (2016). Microbial and enzyme activities of saline and sodic soils. Land Degradation & Development, 27(3), 706-718. https://doi.org/10.1002/ldr.2385

Sobola, O. (2023). Amelioration effect of three agroforestry trees on soil physico-chemical properties in Wukari Taraba State, Nigeria. International Journal of Environmental Pollution and Environmental Modelling, 6(1), 48-56.

Stokes, K. L., Forbes, S. L., & Tibbett, M. (2013). Human versus animal: contrasting decomposition dynamics of mammalian analogues in experimental taphonomy. Journal of Forensic Sciences, 58(3), 583-591. https://doi.org/10.1111/1556-4029.12115

Sugihara, S., Funakawa, S., Kilasara, M., & Kosaki, T. (2010). Effect of land management and soil texture on seasonal variations in soil microbial biomass in dry tropical agroecosystems in Tanzania. Applied Soil Ecology, 44(1), 80-88. https://doi.org/10.1016/j.apsoil.2009.10.003

Surabian, D. (2012). Preservation of buried human remains in soil. US Department of Agriculture: Natural Resources Conservation Service, 1-54.

Sutherland, R. A., & De Jong, E. (1990). Estimation of sediment redistribution within agricultural fields using caesium-137, Crystal Springs, Saskatchewan, Canada. Applied Geography, 10(3), 205-221. https://doi.org/10.1016/0143-6228(90)90022-h

Szelecz, I., Koenig, I., Seppey, C. V., Le Bayon, R. C., & Mitchell, E. A. (2018). Soil chemistry changes beneath decomposing cadavers over a one-year period. Forensic Science International, 286, 155-165. https://doi.org/10.1016/j.forsciint.2018.02.031

Tibbett, M., Carter, D. O., Haslam, T., Major, R., & Haslam, R. (2004). A laboratory incubation method for determining the rate of microbiological degradation of skeletal muscle tissue in soil. Journal of Forensic Sciences, 49(3), JFS2003247-6. https://doi.org/10.1520/jfs2003247

Vass, A. A. (2001). Beyond the grave-understanding human decomposition. Microbiology Today, 28, 190-193.

Wescott, D. J. (2018). Recent advances in forensic anthropology: decomposition research. Forensic Sciences Research, 3(4), 278-293. https://doi.org/10.1080/20961790.2018.1488571

Yong, S. K., Jalaludin, N. H., Brau, E., Shamsudin, N. N., & Heo, C. C. (2019). Changes in soil nutrients (ammonia, phosphate and nitrate) associated with rat carcass decomposition under tropical climatic conditions. Soil Research, 57(5), 482-488. https://doi.org/10.1071/sr18279

Published
2025-09-24
How to Cite
Adheke, O. M., Oghenemavwe, L. E., Onyejike, D. N., Hart, J. S., Udom, B., & Ujoh, T. F. (2025). Impact of carrion decomposition on topsoil chemistry and their eco-forensic implications in a Southern Nigerian ecosystem. Acta Scientiarum. Biological Sciences, 47(1), e72281. https://doi.org/10.4025/actascibiolsci.v47i1.72281

 

0.6
2019CiteScore
 
 
31st percentile
Powered by  Scopus

 

 

0.6
2019CiteScore
 
 
31st percentile
Powered by  Scopus