Phytic acid antioxidant effects on Rhamdia quelen and Cyprinus carpio as potential farming supplementation against water pollution

  • Tamiris Rosso Storck Universidade Federal de Santa Maria
  • Aline Monique Blank do Amaral Universidade Federal de Santa Maria
  • Letícia Kuhn de Moura Universidade Federal de Santa Maria
  • Dionatan de Pellegrin Universidade Federal de Santa Maria
  • Letícia Lopes da Costa Universidade Federal de Santa Maria
  • Jossiele Wesz Leitemperger Universidade Federal de Santa Maria
  • Barbara Clasen Universidade Federal de Santa Maria / Universidade Estadual do Rio Grande do Sul https://orcid.org/0000-0003-1017-4402
  • Leila Picolli da Silva Universidade Federal de Santa Maria
  • Vania Lucia Loro Universidade Federal de Santa Maria
Keywords: Aquatic pollution; antioxidant capacity; biomarkers; fish farming; rice bran.

Abstract

Fish and fishing products are among the most traded food types worldwide. Thus, the use of economically viable and sustainable diet supplementation alternatives to ensure animal health improvement is increasingly requested. Furthermore, the adoption of agricultural waste is a sustainable activity that helps reducing environmental pollution. The aim of the present study is to assess the antioxidant effect of a diet based on different rice bran phytic acid (PA) concentrations, namely: 0.5, 1.0, 1.5 and 2.0% by using oxidative stress and detoxification biomarkers in fish species Cyprinus carpio and Rhamdia quelen. The activity of glutathione S-transferase (GST) and hepatic catalase (CAT) in C. carpio decreased at 2.0% PA. Lipid peroxidation (LPO) increased in the liver at 2.0% PA and the carbonylated protein (CP) content decreased at all tested concentrations. The activity of GST increased in R. quelen at 2.0% PA, whereas CAT activity decreased at 0.5 and 1.5% PA. According to the current study, phytic acid might bring benefits to fish at concentrations up to 1.5% PA. In addition, adding this antioxidant to the feeding of fish bred in ponds can even lead to more significant effects.

Downloads

Download data is not yet available.

References

Aebi, H. (1984). Catalase in vitro. Methods in Enzymology, 105, 121–126. https://doi.org/10.1016/S0076-6879(84)05016-3

Amaral, A. M. B., Gomes, J. L. C., Weimer, G. H., Marins, A. T., Loro, V. L., & Zanella, R. (2018). Seasonal implications on toxicity biomarkers of Loricariichthys anus (Valenciennes, 1835) from a subtropical reservoir. Chemosphere, 191, 876–885. https://doi.org/10.1016/j.chemosphere.2017.10.114

Barros, A. F., & Martins, M. I. E. G. (2012). Performance and economic indicators of a large scale fish farming in Mato Grosso, Brazil. Revista Brasileira de Zoologia, 41, 1325–1331. https://doi.org/10.1590/S1516-35982012000600001

Baruah, K., Sahu, N. P., Pal, A. K., & Debnath, D. (2004). Dietary Phytase: An ideal approach for a cost effective and low-polluting aquafeed. World Fish Center Quarterly, 27, 15–19.

Bohn, L., Meyer, A. S., & Rasmussen, S. K. (2008). Phytate: impact on environment and human nutrition. A challenge for molecular breeding. Journal of Zhejiang University Science B, 9, 165–191. https://doi.org/10.1631/jzus.B0710640

Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254. https://doi.org/10.1016/0003-2697(76)90527-3

Brito, I. A., López-Barrera, E. A., Araújo, S. B. L., & Ribeiro, C. A. O. (2017). Modeling the exposure risk of the silver catfish Rhamdia quelen (Teleostei, Heptapteridae) to wastewater. Ecological Modelling, 347, 40–49. https://doi.org/10.1016/j.ecolmodel.2016.12.017

Canan, C., Cruz, F. T. L., Delaroza, F., Casagrande, R., Sarmento, C. P. M., Shimokomaki, M., & Ida, E. I. (2011). Studies on the extraction and purification of phytic acid from rice bran. Journal of Food Composition and Analysis, 24, 1057–1063. https://doi.org/10.1016/j.jfca.2010.12.014

Canan, C., Delaroza, F., Casagrande, R., Baracat, M. M., Shimokomaki, M., & Iouko Ida, E. (2012). Antioxidant capacity of phytic acid purified from rice bran. Acta Scientiarum. Technology, 34, 457–463. https://doi.org/10.4025/actascitechnol.v34i4.16358

Clasen, B., Loro, V. L., Murussi, C. R., Tiecher, T. L., Moraes, B., & Zanella, R. (2018). Bioaccumulation and oxidative stress caused by pesticides in Cyprinus carpio reared in a rice-fish system. Science of The Total Environment, 626, 737–743. https://doi.org/10.1016/j.scitotenv.2018.01.154

Costa-Silva, D. G. M., Nunes, E. M., Wallau, G. L., Martins, I. K., Zemolin, A. P. P., Cruz, L. C., Rodrigues, N. R., Lopes, A. R., Posser, T., & Franco, J. L. (2015). Oxidative stress markers in fish (Astyanax sp. and Danio rerio) exposed to urban and agricultural effluents in the Brazilian Pampa biome. Environmental Science and Pollution Research, 22, 15526–15535. https://doi.org/10.1007/s11356-015-4737-7

da Costa, L. L., Adorian, T. J., Goulart, F. R., Leitemperger, J., do Amaral, A. M. B., Loro, V. L., Robalo, S. S., & da Silva, L. P. (2021). Phytic acid in Rhamdia quelen nutrition: antioxidant or antinutrient? Animal Feed Science and Technology, 276, Artigo 114915. https://doi.org/10.1016/j.anifeedsci.2021.114915

Danwitz, A., & Schulz, C. (2020). Effects of dietary rapeseed glucosinolates, sinapic acid and phytic acid on feed intake, growth performance and fish health in turbot (Psetta maxima L.). Aquaculture, 516, Artigo 734624. https://doi.org/10.1016/j.aquaculture.2019.734624

Das, D., Moniruzzaman, M., Sarbajna, A., & Chakraborty, S. B. (2017). Effect of heavy metals on tissue-specific antioxidant response in Indian major carps. Environmental Science and Pollution Research, 24, 18010–18024. https://doi.org/10.1007/s11356-017-9415-5

Denstadli, V., Skrede, A., Krogdahl, A., Sahlstrom, S., & Storebakken, T. (2006). Feed intake, growth, feed conversion, digestibility, enzyme activities and intestinal structure in Atlantic salmon (Salmo salar L.) fed graded levels of phytic acid. Aquaculture, 256, 365–376. https://doi.org/10.1016/j.aquaculture.2006.02.021

Draper, H. H., & Hadley, M. (1990). Malondialdehyde determination as index of lipid peroxidation. Methods in Enzymology, 186, 421–431. https://doi.org/10.1016/0076-6879(90)86135-I

Ellestad, L. E., Angel, R., & Soares, J. H. Jr. (2002). Intestinal phytase II: A comparison of activity and in vivo phytate hydrolysis in three teleost species with differing digestive strategies. Fish Physiology and Biochemistry, 26, 259–273. https://doi.org/10.1023/A:1026231624543

Ferreira, C. C., & Flora, M. A. L. D. (2017). Challenges for efficient use of phytase in fish nutrition. Agrarian, 10, 95–104. https://doi.org/10.30612/agrarian.v10i35.4132

Fracalossi, D. M., Meyer, G., Santamaria, F. M., Weingartner, M., & Zaniboni Filho, E. (2004). Desempenho do jundiá, Rhamdia quelen, e do dourado, Salminus brasiliensis, em viveiros de terra na região sul do Brasil. Acta Scientiarum. Animal Sciences, 26, 345–352.

Ghisi, N. C., Oliveira, E. C., Fávaro, L. F., Assis, H. C. S., & Prioli, A. J. (2014). In Situ Assessment of a Neotropical fish to evaluate pollution in a river receiving agricultural and urban wastewater. Bulletin of Environmental Contamination and Toxicology, 93, 699–709. https://doi.org/10.1007/s00128-014-1403-6

Graf, E., & Eaton, J. W. (1990). Antioxidant functions of phytic acid. Free Radical Biology and Medicine, 8, 61–69. https://doi.org/10.1016/0891-5849(90)90146-a

Graf, E., Empson, K. L., & Eaton, J. W. (1987). Phytic acid. A natural antioxidant. The Journal of Biological Chemistry, 262, 11647–11650. https://doi.org/10.1016/S0021-9258(18)60858-0

Graf, E., Mahoney, J. R., Bryant, R. G., & Eaton, J. W. (1984). Iron catalyzed hydroxyl radical formation. Stringent requirement for free iron coordination site. The Journal of Biological Chemistry, 259, 3620–3624. https://doi.org/10.1016/S0021-9258(17)43139-5

Habig, W. H., Pabst, M. J., & Jakoby, W. B. (1974). Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. The Journal of Biological Chemistry, 249, 7130–7139. https://doi.org/10.1016/S0021-9258(19)42083-8

Harbach, A. P. R., da Costa, M. C. R., Soares, A. L., Bridi, A. M., Shimokomaki, M., da Silva, C. A., & Ida, E. I. (2007). Dietary corn germ containing phytic acid prevents pork meat lipid oxidation while maintaining normal animal growth performance. Food Chemistry, 100, 1630–1633. https://doi.org/10.1016/j.foodchem.2005.11.046

Helland, S., Denstadli, V., Witten, P. E., Hjelde, K., Storebakken, T., Skrede, A., Åsgård, T., & Baeverfjord, G. (2006). Hyper dense vertebrae and mineral content in Atlantic salmon (Salmo salar L.) fed diets with graded levels of phytic acid. Aquaculture, 261, 603–614. https://doi.org/10.1016/j.aquaculture.2006.08.027

Huang, H., Shi, P., Wang, Y., Luo, H., Shao, N., Wang, G., Yang, P., & Yao, B. (2009). Diversity of Beta-Propeller phytase genes in the intestinal contents of grass carp provides insight into the release of major phosphorus from phytate in nature. Applied and Environmental Microbiology, 75, 1508–1516. https://doi.org/10.1128/AEM.02188-08

Kong, C., Wang, H., Li, D., Zhang, Y., Pan, J., Zhu, B., & Luo, Y. (2016). Quality changes and predictive models of radial basis function neural networks for brined common carp (Cyprinus carpio) fillets during frozen storage. Food Chemistry, 201, 327–333. https://doi.org/10.1016/j.foodchem.2016.01.088

Konietzny, U., & Greiner, R. (2003). Phytic acid: Nutritional Impact. In B. Caballero, L. Trugo, & P. Finglas (Eds.), Encyclopedia of Food Science and Nutrition (pp. 4555–4563). Elsevier.

Kumar, V., Sinha, A. K., Makkar, H. P. S., De Boeck, G., & Becker, K. (2011). Phytate and phytase in fish nutrition. Journal of Animal Physiology and Animal Nutrition, 96, 335–364. https://doi.org/10.1111/j.1439-0396.2011.01169.x

Lushchak, V. I. (2011). Environmentally induced oxidative stress in aquatic animals. Aquatic Toxicology, 101, 13–30. https://doi.org/10.1016/j.aquatox.2010.10.006

McClain, W. R., & Gatlin, D. M. (1988). Dietary Zinc Requirement of Oreochromis aureus and effects of dietary calcium and phytate on zinc bioavailability. Journal of the World Aquaculture Society, 19, 103–108. https://doi.org/10.1111/j.1749-7345.1988.tb01052.x

Menezes, C., Leitemperger, J., Toni, C., Santi, A., Lópes, T., Barbosa, N. B. V., Neto, J. R., & Loro, V. L. (2013). Comparative study on effects of dietary with diphenyl diselenide on oxidative stress in carp (Cyprinus carpio) and silver catfish (Rhamdia sp.) exposed to herbicide clomazone. Environmental Toxicology and Pharmacology, 36, 706–714. https://doi.org/10.1016/j.etap.2013.07.002

Monteiro, D. A., Rantin, F. T., & Kalinin, A. L. (2009). The effects of selenium on oxidative stress biomarkers in the freshwater characid fish matrinxã, Brycon cephalus (Günther, 1869) exposed to organophosphate insecticide Folisuper 600 BR® (methyl parathion). Comparative Biochemistry and Physiology - C, 149, 40–49. https://doi.org/10.1016/j.cbpc.2008.06.012

Ogino, C., & Yang, G. Y. (1978). Requirement of rainbow trout for dietary zinc. Bulletin of the Japanese Society of Scientific Fisheries, 44, 1015–1018.

Organização para a Cooperação e Desenvolvimento Económico/Organização das Nações Unidas para a Alimentação e a Agricultura. (2019). Agricultural Outlook 2019–2028. OECD Publishing. https://bitily.me/VEwrL

Pérez, M. R., Rossi, A. S., Bacchetta, C., Elorriaga, Y., Carriquiriborde, P., & Cazenave, J. (2018). In situ evaluation of the toxicological impact of a wastewater effluent on the fish Prochilodus lineatus: biochemical and histological assessment. Ecological Indicators, 84, 345–353. https://doi.org/10.1016/j.ecolind.2017.09.004

Peterson, D. M. (2001). Oat Antioxidants. Journal of Cereal Science, 33, 115–129. https://doi.org/10.1006/jcrs.2000.0349

Ribeiro, L. D., Barcelos, G. R. M., & d’Arce, L. P. G. (2014). Genotoxic effects of water from São Francisco River, Brazil, in Astyanax paranae. Bulletin of Environmental Contamination and Toxicology, 93, 274–279. https://doi.org/10.1007/s00128-014-1291-9

Rio Grande do Sul. (2020). Atlas socioeconômico do Rio Grande do Sul. Secretaria de Planejamento, Governança e Gestão. https://atlassocioeconomico.rs.gov.br/arroz

Rodrigues, M. L., Sanchez, M. S. S., Pessini, J. E., Weiler, K. A., Deparis, A., Boscolo, W. R., Bittencourt, F., & Signor, A. (2020). Replacement of corn by sorghum and phytase supplementation in silver catfish (Rhamdia quelen) diets: growth performance, physiological variables and bone mineralization. Journal of Applied Animal Research, 48, 142–150. https://doi.org/10.1080/09712119.2020.1750411

Rotta, M. A. (2003). Aspectos gerais da fisiologia e estrutura do sistema digestivo dos peixes relacionados à piscicultura. Embrapa Pantanal.

Salhi, M., Bessonart, M., Chediak, G., Bellagamba, M., & Carnevia, D. (2004). Growth, feed utilization and body composition of black catfish, Rhamdia quelen, fry fed diets containing different protein and energy levels. Aquaculture, 231, 435–444. https://doi.org/10.1016/j.aquaculture.2003.08.006

Scottá, B. A., Gomide, A. P. C., Campos, P. F., Barroca, C. C., Formigoni, A. S., & Ferreira, S. V. (2014). Utilização de fitase na alimentação de aves e suínos. Publicações em Medicina Veterinária e Zootecnia, 8(2), Artigo 251. https://doi.org/10.22256/pubvet.v8n2.1660

Storck, T. R., Amaral, A. M. B., Cruz, T. K. T., Pellegrin, D., Ames, J., Cerezer, F. O., Zanella, R., Prestes, O. D., Loro, V. L., & Clasen, B. (2022). Biomarkers’ Responses in Neotropical Freshwater Fish Living in Southern Brazil: Agricultural Activity or Seasonal Interference? Water, Air, and Soil Pollution, 233, Artigo 476. https://doi.org/10.1007/s11270-022-05956-4

Storck, T. R., Amaral, A. M. B., Cruz, T. K. T., Schneider, S. I., Cerezer, F. O., Oliveira, J. A., Zanella, R., Prestes, O. D., Giacomini, S. J., Loro, V. L., Golombieski, J. I., & Clasen, B. (2025). Anthropogenic actions alter the aquatic environment quality: biomonitoring study of a river in Southern Brazil. Aquatic Ecology, 59, 185–202. https://doi.org/10.1007/s10452-024-10156-9

Usmani, N., & Jafri, A. K. (2002). Influence of Dietary Phytic Acid on the Growth, Conversion Efficiency, and Carcass Composition of Mrigal Cirrhinus mrigala (Hamilton) Fry. Journal of the World Aquaculture Society, 33, 199–204. https://doi.org/10.1111/j.1749-7345.2002.tb00495.x

Van der Oost, R., Beyer, J., & Vermeulen, N. P. E. (2003). Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environmental Toxicology and Pharmacology, 13, 57–149. https://doi.org/10.1016/S1382-6689(02)00126-6

Vandeputte, M. (2003). Selective breeding of quantitative traits in the common carp (Cyprinus carpio): A review. Aquatic Living Resources, 16, 399–407. https://doi.org/10.1016/S0990-7440(03)00056-1

Vieira, C. E. D., Costa, P. G., Caldas, S. S., Tesser, M. E., Risso, W. E., Escarrone, A. L. V., Primel, E. G., Bianchini, A., & Martinez, C. B. R. (2019). An integrated approach in subtropical agro-ecosystems: Active biomonitoring, environmental contaminants, bioaccumulation, and multiple biomarkers in fish. Science of the Total Environment, 666, 508–524. https://doi.org/10.1016/j.scitotenv.2019.02.209

Yan, L. J., Traber, M. G., & Packer, L. (1995). Spectrophotometric method for determination of carbonyls in oxidatively modified apolipoprotein B of human low-density lipoproteins. Analytical Biochemistry, 228, 349–351. https://doi.org/10.1006/abio.1995.1362

Young, I. S., & Woodside, J. V. (2001). Antioxidants in health and disease. Journal of Clinical Pathology, 54, 176–186. https://doi.org/10.1136/jcp.54.3.176

Published
2025-09-24
How to Cite
Storck, T. R., Amaral, A. M. B. do, Moura, L. K. de, Pellegrin, D. de, Costa, L. L. da, Leitemperger, J. W., Clasen, B., Silva, L. P. da, & Loro, V. L. (2025). Phytic acid antioxidant effects on Rhamdia quelen and Cyprinus carpio as potential farming supplementation against water pollution. Acta Scientiarum. Biological Sciences, 47(1), e72630. https://doi.org/10.4025/actascibiolsci.v47i1.72630
Section
Biotechnology

 

0.6
2019CiteScore
 
 
31st percentile
Powered by  Scopus

 

 

0.6
2019CiteScore
 
 
31st percentile
Powered by  Scopus