Maize grown in soil contaminated by mining tailings shows reduced growth and yield

  • Renata Maia Universidade Federal de Minas Gerais
  • Yumi Oki Universidade Federal de Minas Gerais
  • Milton Barbosa Universidade Federal de Minas Gerais
  • Ricardo Luiz Louro Berbara Universidade Federal Rural do Rio de Janeiro
  • Geraldo Wilson Fernandes Centro de Conhecimento em Biodiversidade https://orcid.org/0000-0003-1559-6049
Keywords: dam breach; environmental impact; heavy metals; maize productivity; Samarco mining disaster.

Abstract

The 2015 Samarco dam collapse in Mariana, Brazil, resulted in the widespread deposition of mining tailings across agricultural lands in the Rio Doce Basin. This study was carried out in the municipality of Rio Casca, where a single maize variety was cultivated simultaneously in two comparable areas: one contaminated by mining tailings and one uncontaminated control area. Plants were of the same age and grown under similar climatic conditions, minimizing environmental variation. Soil and plant samples were analysed for physical and chemical properties, including nutrient and heavy metal content. The contaminated area showed reduced base saturation, lower effective cation exchange capacity, higher concentrations of Na, Fe, and Cu, and lower Mg concentration. Maize grown in contaminated soil exhibited reduced nitrogen balance index and chlorophyll content, thinner and broader leaves. Significant reductions in plant height, stem diameter, and overall biomass were also recorded for plants grown in the area exposed to mining tailings. Grain analysis further confirmed the negative effects of the mining tailings, with reductions in essential nutrients, like Ca, Mg, and N, and an increase in Na content, which can impair water uptake and cause ion toxicity. These findings show that maize grown in soil contaminated by mining tailings accumulates nutrients differently in leaves, roots, and grains, and has lower chlorophyll content, growth, and yield. Despite identical fertilization and climatic conditions, the lower fertility and altered composition of the contaminated soil limited crop performance. These results underscore the lasting impact of tailings on soil function and maize productivity, reinforcing the need for targeted management in affected areas of the Rio Doce Basin.

Downloads

Download data is not yet available.

References

AECOM. (2020). Relatório N° 59 (Perito do Juízo, 4ª. Vara Federal Cível e Agrária da SSJ de Belo Horizonte, na Ação Civil Pública, Processo N° 1000412-91.2020.4.01.3800). SSJ.

Ahmed, M., Tóth, Z., & Decsi, K. (2024). The impact of salinity on crop yields and the confrontational behavior of transcriptional regulators, nanoparticles, and antioxidant defensive mechanisms under stressful conditions: a review. International Journal of Molecular Sciences, 25(5), 2654. https://doi.org/10.3390/ijms25052654

Alloway, B. J. (2013). Heavy metals and metalloids as micronutrients for plants and animals. In B. J. Alloway (Ed.), Heavy metals in soils: Trace metals and metalloids in soils and their bioavailability (pp. 195–209). Springer Netherlands. https://doi.org/10.1007/978-94-007-4470-7_7

Almeida, H. A., Della Torre, F., & Garcia, Q. S. (2022). Cultivating vegetables in tailings from the Fundão dam collapse: metal accumulation and risks to food safety. Environmental Monitoring and Assessment, 194, 410. https://doi.org/10.1007/s10661-022-10060-5

Alvares, C. A., Stape, J. L., Sentelhas, P. C., De Moraes Gonçalves, J. L., & Sparovek, G. (2013). Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, 22, 711–728. https://doi.org/10.1127/0941-2948/2013/0507

Araujo, A. C., Viana, P. R. M., & Peres, A. E. C. (2005). Reagents in iron ores flotation. Minerals Engineering, 18, 219–224. https://doi.org/10.1016/j.mineng.2004.08.023

Araújo, B. D., Maia, R., Arantes-Garcia, L., Oki, Y., Negreiros, D., Assis, I. R. D., & Fernandes, G. W. (2022). Aftershocks of the Samarco disaster: diminished growth and increased metal content of Raphanus sativus cultivated in soil with mining tailings. Acta Scientiarum. Biological Sciences, 44, e59175. https://doi.org/10.4025/actascibiolsci.v44i1.59175

Ashraf, M. A., Maah, M. J., & Yusoff, I. (2011). Heavy metals accumulation in plants growing in ex tin mining catchment. International Journal of Environmental Science & Technology, 8, 401–416. https://doi.org/10.1007/BF03326227

Cakmak, I., & Kirkby, E. A. (2008). Role of magnesium in carbon partitioning and alleviating photooxidative damage. Physiologia Plantarum, 133, 692–704. https://doi.org/10.1111/j.1399-3054.2007.01042.x

Carmo, F. F., Kamino, L. H. Y., Junior, R. T., Campos, I. C., Carmo, F. F., Silvino, G., Xavier de Castro, K. J. S., Mauro, M. L., Rodrigues, N. U. A., Miranda, M. P. S., & Pinto, C. E. F. (2017). Fundão tailings dam failures: The environment tragedy of the largest technological disaster of Brazilian mining in global context. Perspectives in Ecology and Conservation, 15(3), 145–151. https://doi.org/10.1016/j.pecon.2017.06.002

Cavalheiro Paulelli, A. C., Cesila, C. A., Devóz, P. P., Oliveira, S. R., Ximenez, J. P. B., Filho, W. R. P., & Barbosa Jr, F. (2022). Fundão tailings dam failure in Brazil: evidence of a population exposed to high levels of Al, As, Hg, and Ni after a human biomonitoring study. Environmental Research, 205, 112524. https://doi.org/10.1016/j.envres.2021.112524

Chen, C. T., Lee, C. L., & Yeh, D. M. (2018). Effects of nitrogen, phosphorus, potassium, calcium, or magnesium deficiency on growth and photosynthesis of Eustoma. HortScience, 53, 795–798. https://doi.org/10.21273/HORTSCI12947-18

Coelho, D. G., Marinato, C. S., Matos, L. P., Andrade, H. M., Silva, V. M., Neves, P. H. S., & Oliveira, J. A. (2020). Evaluation of metals in soil and tissues of economic-interest plants grown in sites affected by the Fundão Dam failure in Mariana, Brazil. Integrated Environmental Assessment and Management, 16, 596–607. https://doi.org/10.1002/ieam.4253

Cruz, F. V. S., Gomes, M. P., Bicalho, E. M., Della Torre, F., & Garcia, Q. S. (2020). Does Samarco’s spilled mud impair the growth of native trees of the Atlantic Rainforest? Ecotoxicology and Environmental Safety, 189, 110021. https://doi.org/10.1016/j.ecoenv.2019.110021

Cruz, F. V., Gomes, M. P., Bicalho, E. M., & Garcia, Q. S. (2022). Fertilization assures mineral nutrition but does not overcome the effects of Fe accumulation in plants grown in iron ore tailings. Environmental Science and Pollution Research, 29, 18047–18062. https://doi.org/10.1007/s11356-021-16989-3

Esteves, G. de F., Bressanin, L. A., Souza, K. R. D., Silva, A. B., Mantovani, J. R., Marques, D. M., ... Souza, T. C. (2020). Do tailings from the Mariana, MG (Brazil), disaster affect the initial development of millet, maize, and sorghum? Environmental Science and Pollution Research, 27, 38662–38673. https://doi.org/10.1007/s11356-020-10013-w

Fernandes, G. W., Goulart, F. F., Ranieri, B. D., Coelho, M. S., Dales, K., Boesche, N., Bustamante, M., Carvalho, F. A., Carvalho, D. C., Dirzo, R., Fernandes, S., Galetti, P. M., Millan, V. E. G., Mielke, C., Ramirez, J. L., Neves, A., Rogass, C., & Soares-Filho, B. (2016). Deep into the mud: Ecological and socio-economic impacts of the dam breach in Mariana, Brazil. Natureza & Conservação, 14, 35–45. https://doi.org/10.1016/j.ncon.2016.10.003

Fernandes, G. W., Ramos, L., Justino, W. S., Kenedy-Siqueira, W., Figueiredo, J. C. G., Oki, Y., Goulart, F. F., Santos, R. M., Viana, J. H. M., Nunes, Y. R. F., Aguilar, R., Poorter, L., van der Sande, M. T., & Negreiros, D. (2025). Mining tailings severely impact plant communities in a rainforest watershed. Anthropocene, 100462. https://doi.org/10.1016/j.ancene.2025.100462

Filippov, L. O., Severov, V. V., & Filippova, I. V. (2014). An overview of the beneficiation of iron ores via reverse cationic flotation. International Journal of Mineral Processing, 127, 62–69. https://doi.org/10.1016/j.minpro.2014.01.002

Freitas, J. C. E., Resende, C. F., Paula Pimenta, M., Frattini, L. M., Reis, P. R. C., Miranda, J. B., Silva, J. C. J., César, D. E., Nery, F. C., & Peixoto, P. H. P. (2023). Assessing the ecophysiological effects of iron mining tailings on velvet bean: implications for growth limitations based on mineral composition and physicochemical properties of tailings-soil substrates. Brazilian Journal of Botany, 46, 715–729. https://doi.org/10.1007/s40415-023-00911-x

Gill, S. S., & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48, 909–930. https://doi.org/10.1016/j.plaphy.2010.08.016

Gomes, A. R., Antão, A., Santos, A. G. P., Lacerda, T. J., Medeiros, M. B., Saenz, L. A. I., Alvarenga, S., Santos, C. H., Rigobelo, E. C., & Scotti, M. R. (2021). Rehabilitation of a riparian site reached by contaminated tailings from the Fundão dam using different remediation strategies in Brazil. Environmental Toxicology and Chemistry, 40, 2359–2373. https://doi.org/10.1002/etc.5075

Gudin, G. S., Damasceno Jr, P. C., dos Santos, T. A., Silva, M. M., Pinto, T. O., Bacarin, M. A., & Silva, D. M. (2024). How the tailings of the Fundão Dam impacted the photosynthetic metabolism and viability of pollen grains of Canavalia rosea. Theoretical and Experimental Plant Physiology, 36, 701–716. https://doi.org/10.1007/s40626-024-00337-0

Guerra, M. B. B., Teaney, B. T., Mount, B. J., Asunskis, D. J., Jordan, B. T., Barker, R. J., & Schaefer, C. E. G. R. (2017). Post-catastrophe analysis of the Fundão tailings dam failure in the Doce river system, Southeast Brazil: potentially toxic elements in affected soils. Water, Air & Soil Pollution, 228, 252. https://doi.org/10.1007/s11270-017-3430-5

Gupta, N., Yadav, K. K., Kumar, V., Prasad, S., Cabral-Pinto, M. M. S., Jeon, B., Kumar, S., Abdellattif, M. H., & Alsukaibia, A. K. D. (2022). Investigation of heavy metal accumulation in vegetables and health risk to humans from their consumption. Frontiers in Environmental Science, 10, 791052. https://doi.org/10.3389/fenvs.2022.791052

Havlin, J., & Tisdale, S. L. (2014). Soil fertility and fertilizers: An introduction to nutrient management (8th ed.). Pearson.

Horn, R., Domżżał, H., Słowińska-Jurkiewicz, A., & van Ouwerkerk, C. (1995). Soil compaction processes and their effects on the structure of arable soils and the environment. Soil and Tillage Research, 35, 23–36. https://doi.org/10.1016/0167-1987(95)00479-C

Lipiec, J., Medvedev, V. V., Birkas, M., Dumitru, E., Lyndina, T. E., Rousseva, S., & Fulajtár, E. (2003). Effect of soil compaction on root growth and crop yield in Central and Eastern Europe. International Agrophysics, 17, 61–69.

Ma, L., Liu, X., Lv, W., & Yang, Y. (2022). Molecular mechanisms of plant responses to salt stress. Frontiers in Plant Science, 13, 934877. https://doi.org/10.3389/fpls.2022.934877

Maia, R. A., Arantes-Garcia, L., Pereira, E. G., Modolo, L. V., Siqueira-Silva, A. I., Esteves, L. V. C., ... Fernandes, G. W. (2023). Sunflower physiological adjustments to elevated CO₂ and temperature do not improve reproductive performance and productivity. Environmental and Experimental Botany, 213, 105448. https://doi.org/10.1016/j.envexpbot.2023.105448

Marschner, H. (2012). Marschner’s mineral nutrition of higher plants (3rd ed.). Academic Press.

Marta-Almeida, M., Mendes, R., Amorim, F. N., Cirano, M., & Dias, J. M. (2016). Fundão Dam collapse: oceanic dispersion of River Doce after the greatest Brazilian environmental accident. Marine Pollution Bulletin, 112, 359–364. https://doi.org/10.1016/j.marpolbul.2016.07.039

Maxwell, K., & Johnson, G. N. (2000). Chlorophyll fluorescence – A practical guide. Journal of Experimental Botany, 51, 659–668. https://doi.org/10.1093/jexbot/51.345.659

Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651–681. https://doi.org/10.1146/annurev.arplant.59.032607.092911

Perea, R., Dirzo, R., Bieler, S., & Fernandes, G. W. (2021). Incidence of galls on sympatric California oaks: ecological and physiological perspectives. Diversity, 13, 20. https://doi.org/10.3390/d13010020

Qadir, M., & Schubert, S. J. L. D. (2002). Degradation processes and nutrient constraints in sodic soils. Land Degradation & Development, 13(4), 275–294.

Ramos, L., Negreiros, D., Goulart, F. F., Figueiredo, J. C. G., Kenedy-Siqueira, W., Toma, T. S. P., ... Fernandes, G. W. (2024). Dissimilar forests along the Rio Doce watershed call for multiple restoration references to avoid biotic homogenization. Science of The Total Environment, 930, 172720. https://doi.org/10.1016/j.scitotenv.2024.172720

Santos, O. S. H., Avellar, F. C., Alves, M., Trindade, R. C., Menezes, M. B., Ferreira, M. C., França, G. S., Cordeiro, J., Sobreira, F. G., Yoshida, I. M., Moura, P. M., Baptista, M. B., & Scotti, M. R. (2019). Understanding the environmental impact of a mine dam rupture in Brazil: prospects for remediation. Journal of Environmental Quality, 48, 439–449. https://doi.org/10.2134/jeq2018.04.0168

Scotti, M. R., Gomes, A. R., Lacerda, T. J., Ávila, S. S., Silva, S. L. L., Antão, A., Santos, A. G. P., Medeiros, M. B., Alvarenga, S., Santos, C. H., & Rigobelo, E. C. (2020). Remediation of a riparian site in the Brazilian Atlantic Forest reached by contaminated tailings from the collapsed Fundão dam with native woody species. Integrated Environmental Assessment and Management, 16, 669–675. https://doi.org/10.1002/ieam.4272

Sharma, P., Jha, A. B., Dubey, R. S., & Pessarakli, M. (2012). Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of Botany, 2012, e217037. https://doi.org/10.1155/2012/217037

Shomali, A., Das, S., Arif, N., Sarraf, M., Zahra, N., Yadav, V., Aliniaeifard, S., Chauhan, D. K., & Hasanuzzaman, M. (2022). Diverse physiological roles of flavonoids in plant environmental stress responses and tolerance. Plants, 11. https://doi.org/10.3390/plants11223158

Silva, D. R., Schaefer, C. E. G. R., Kuki, K. N., Santos, M. F. S., Heringer, G., & Silva, L. C. (2022). Why is Brachiaria decumbens Stapf. a common species in the mining tailings of the Fundão dam in Minas Gerais, Brazil? Environmental Science and Pollution Research, 29, 79168–79183. https://doi.org/10.1007/s11356-022-21345-0

Singh, S., Parihar, P., Singh, R., Singh, V. P., & Prasad, S. M. (2016). Heavy metal tolerance in plants: Role of transcriptomics, proteomics, metabolomics, and ionomics. Frontiers in Plant Science, 6, 1143 https://doi.org/10.3389/fpls.2015.01143

Sumner, M. E., & Miller, W. P. (1996). Cation exchange capacity and exchange coefficients. In Methods of soil analysis (pp. 1201–1229). John Wiley & Sons, Ltd. https://doi.org/10.2136/sssabookser5.3.c40

Testa, G., Corinzia, S. A., Cosentino, S. L., & Ciaramella, B. R. (2023). Phytoremediation of cadmium, lead, and nickel polluted soils by industrial hemp. Agronomy, 13(4), 995. https://doi.org/10.3390/agronomy13040995

Vormittag, E., Saldiva, P., Anastacio, A., & Barbosa, F. (2021). High levels of metals/metalloids in blood and urine of residents living in the area affected by the dam failing in Barra Longa, District, Brazil: a preliminary human biomonitoring study. Environmental Toxicology and Pharmacology, 83, 103566. https://doi.org/10.1016/j.etap.2020.103566

Wang, L., Lu, X., Ren, C., Li, X., & Chen, C. (2014). Contamination assessment and health risk of heavy metals in dust from Changqing industrial park of Baoji, NW China. Environmental Earth Sciences, 71, 2095–2104. https://doi.org/10.1007/s12665-013-2613-7

Wu, C. H., Wood, T. K., Mulchandani, A., & Chen, W. (2006). Engineering plant-microbe symbiosis for rhizoremediation of heavy metals. Applied and Environmental Microbiology, 72, 1129–1134. https://doi.org/10.1128/AEM.72.2.1129-1134.2006

Zhou, H., Yang, W. T., Zhou, X., Liu, L., Gu, J. F., Wang, W. L., & Liao, B. H. (2016). Accumulation of heavy metals in vegetable species planted in contaminated soils and the health risk assessment. International Journal of Environmental Research and Public Health, 13, 289. https://doi.org/10.3390/ijerph13030289

Zhu, J. K. (2001). Plant salt tolerance. Trends in Plant Science, 6, 66–71. https://doi.org/10.1016/S1360-1385(00)01838-0

Published
2025-09-24
How to Cite
Maia, R., Oki, Y., Barbosa, M., Berbara, R. L. L., & Fernandes, G. W. (2025). Maize grown in soil contaminated by mining tailings shows reduced growth and yield . Acta Scientiarum. Biological Sciences, 47(1), e72972. https://doi.org/10.4025/actascibiolsci.v47i1.72972

 

0.6
2019CiteScore
 
 
31st percentile
Powered by  Scopus

 

 

0.6
2019CiteScore
 
 
31st percentile
Powered by  Scopus