Integrated multi-trophic culture of Penaeus vannamei with Gracilaria domingensis in biofloc system

Palavras-chave: Protein; seaweed; growth performance; IMTA.

Resumo

Co-cultures of the Pacific white shrimp Penaeus vannamei and seaweeds have been proposed as a promising and environmentally friendly way to reduce the levels of nitrogen and phosphorus in aquaculture wastewater. Therefore, the aim of this study was to evaluate the interaction between protein levels in feed as well as the stocking densities of the seaweed Gracilaria domingensis in an integrated culture with P. vannamei using biofloc system. To do so, two protein levels in feed (32% and 40% of crude protein) and four stocking densities (0, 2.5, 5.0, and 7.5 kg m−3) of G. domingensis integrated with P. vannamei were evaluated at the secondary nursery phase, in factorial design (2-factor ANOVA). Shrimp (0.5 ± 0.05 g) were stocked at a density of 500 shrimp m−3 and reared for 42 days. During the experiment, water quality analysis was conducted, and at the end growth performance was evaluated. The water quality was not influenced by both factors, showing no significant differences. Regarding growth performance, the survival (86.2 ± 10.1%) and protein utilization efficiency rate (1.8 ± 0.3) did not differ among treatments. Feed conversion rate, weekly growth, and yield were influenced by protein percentage of the feed, presenting higher values when fed with 40% feed. However, the final mean weight of the shrimp integrated with the seaweed with 32% crude protein supply was similar to the monoculture treatment with 40% crude protein. In summary, the addition of G. domingensis in an integrated culture with P. vannamei did not affect shrimp performance.

Downloads

Não há dados estatísticos.

Referências

Attasat, S., Wanichpongpan, P., & Ruenglertpanyakul, W. (2013). Design of integrated aquaculture of the Pacific white shrimp, Tilapia and Green Seaweed. Journal of Sustainable Energy & Environment, 4, 9-14.

Avnimelech, Y. (1999). Carbon/nitrogen ratio as a control element in aquaculture systems. Aquaculture, 176(3-4), 227-235. https://doi.org/10.1016/S0044-8486(99)00085-X

Avnimelech, Y. (2009). Biofloc technology: A practical guide book. World Aquaculture Society.

Brito, L. O., Arana, L. A. V., Soares, R. B., Severi, W., Miranda, R. H., Silva, S. M. B. C., Coimbra, M. R. M., & Gálvez, A. O. (2014). Water quality, phytoplankton composition and growth of Litopenaeus vannamei (Boone) in an integrated biofloc system with Gracilaria birdiae (Greville) and Gracilaria domingensis (Kützing). Aquaculture International, 22(5), 1649–1664. https://doi.org/10.1007/s10499-014-9771-9

Brito, L. O., Cardoso Junior, L. O., Abreu, J. L., Severi, W., Moraes, L. B. S., & Galvez, A. O. (2018a). Bioremediation of shrimp biofloc wastewater using clam, seaweed and fish. Chemistry and Ecology, 34(10), 901–913. https://doi.org/10.1080/02757540.2018.1520843

Brito, L. O., Cardoso Junior, L. O., Abreu, J. L., Severi, W., Moraes, L. B. S., & Galvez, A. O. (2018b). Effects of two commercial feeds with high and low crude protein content on the performance of white shrimp Litopenaeus vannamei raised in an integrated biofloc system with the seaweed Gracilaria birdiae. Spanish Journal of Agricultural Research, 16(1), e0603. https://doi.org/10.5424/sjar/2018161-11451

Busetti, A., Maggs, C. A., & Gilmore, B. F. (2017). Marine macroalgae and their associated microbiomes as a source of antimicrobial chemical diversity. European Journal of Phycology, 52(4), 452–465. https://doi.org/10.1080/09670262.2017.1376709

Callow, M. E., & Callow, J. E. (2002). Marine biofouling: A sticky problem. Biologist (London, England), 49(1), 10–14.

Campos, C. V. F. D. S., Moraes, L. B. S. D., Farias, R. D. S., Severi, W., Brito, L. O., & Gálvez, A. O. (2019). Phytoplankton communities in aquaculture system (integration of shrimp and seaweed). Chemistry and Ecology, 35(10), 903-921. https://doi.org/10.1080/02757540.2019.1668378

Casillas-Hernández, R., Magallón-Barajas, F., Portillo-Clarck, G., & Páez-Osuna, F. (2006). Nutrient mass balances in semi-intensive shrimp ponds from Sonora, Mexico using two feeding strategies: Trays and mechanical dispersal. Aquaculture, 258(1-4), 289-298. https://doi.org/10.1016/j.aquaculture.2006.03.027

Castelar, B., Pontes, M. D., Costa, W. M., Moura, L. C. F., Dias, G. E., Landuci, F. S., & Reis, R. P. (2015). Biofiltering efficiency and productive performance of macroalgae with potential for integrated multi-trophic aquaculture (IMTA). Boletim do Instituto de Pesca, 41, 763-770.

Correia, E. S., Wilkenfeld, J. S., Morris, T. C., Wei, L., Prangnell, D. I., & Samocha, T. M. (2014). Intensive nursery production of the Pacific white shrimp Litopenaeus vannamei using two commercial feeds with high and low protein content in a biofloc-dominated system. Aquacultural Engineering, 59, 48-54. https://doi.org/10.1016/j.aquaeng.2014.02.002

Elle, B. J., Corre, V., Felarca, K. G., & Pedroso, F. (2017). Potential of Gracilariopsis bailiniae and Oreochromis mossambicus in improving water quality in intensive Litopenaeus vannamei tank culture. AACL Bioflux, 10(5), 1309-1318.

Emerenciano, M. G. C., Martínez-Córdova, L. R., Martínez-Porchas, M., & Miranda-Baeza, A. (2017). Biofloc Technology (BFT): A tool for water quality management in aquaculture. In H. Tutu (Ed.), Water quality (p. 91-109). InTech.

Felföldy, L. (1987). A biológiai vízminősítés, bőv. kiad. Vízgazdálkodási Intézet.

Ferreira, L. M. H., Lara, G., Wasielesky Jr., W., & Abreu, P. C. (2016). Biofilm versus biofloc: Are artificial substrates for biofilm production necessary in the BFT system?. Aquaculture International, 24, 921–930. https://doi.org/10.1007/s10499-015-9961-0

Fleurence, J., Morançais, M., Dumay, J., Decottignies, P., Turpin, V., Munier, M., Garcia-Bueno, N., & Jaouen, P. (2012). What are the prospects for using seaweed in human nutrition and for marine animals raised through aquaculture?. Trends in Food Science and Technology, 27(1), 57-61. https://doi.org/10.1016/j.tifs.2012.03.004

Fourooghifard, H., Matinfar, A., Mortazavi, M. S., Ghadikolaee, K., & Mirbakhsh, M. (2018). Nitrogen and phosphorous budgets for integrated culture of whiteleg shrimp Litopenaeus vannamei with red seaweed Gracilaria corticata in zero water exchange system. Iranian Journal of Fisheries Sciences, 17(3), 471-486. https://doi.org/10.22092/IJFS.2018.116382

Furtado, P. S., Campos, B. R., Serra, F. P., Klosterhoff, M., Romano, L. A., & Wasielesky Jr., W. (2015). Effects of nitrate toxicity in the Pacific white shrimp, Litopenaeus vannamei, reared with biofloc technology (BFT). Aquaculture International, 23, 315–327. https://doi.org/10.1007/s10499-014-9817-z

Furtado, P. S., Valenzuela, M. A. J., Rodriguez-Fuentes, G., Campos, B. R., Wasielesky Jr., W., & Gaxiola, G. (2016). Chronic effect of nitrite on the rearing of the white shrimp Litopenaeus vannamei in two salinities. Marine and Freshwater Behaviour and Physiology, 49(3), 201-211. https://doi.org/10.1080/10236244.2016.1163837

Gao, G., Gao, L., Fu, Q., Li, X., & Xu, J. (2022). Coculture of the Pacific white shrimp Litopenaeus vannamei and the macroalga Ulva linza enhances their growth rates and functional properties. Journal of Cleaner Production, 349, 131407. https://doi.org/10.1016/j.jclepro.2022.131407

Golterman, H. L., Clymo, R. S., & Ohnstad, M. A. M. (1978). Methods for physical and chemical analysis of fresh waters. Blackwell Scientific Publications.

Grasshoff, K., & Almgreen, T. (1976). Methods of seawater analysis (1. Aufl). Verlag Chemie.

Hall-Stoodley, L., Costerton, J. W., & Stoodley, P. (2004). Bacterial biofilms: From the natural environment to infectious diseases. Nature Reviews Microbiology, 2(2), 95-108. https://doi.org/10.1038/nrmicro821

Jackson, C., Preston, N., Thompson, P. J., & Burford, M. (2003). Nitrogen budget and effluent nitrogen components at an intensive shrimp farm. Aquaculture, 218(1-4), 397–411. https://doi.org/10.1016/s0044-8486(03)00014-0

Jiang, H., Zou, D., Lou, W., Chen, W., & Yang, Y. (2019). Growth and photosynthesis by Gracilariopsis lemaneiformis (Gracilariales, Rhodophyta) in response to different stocking densities along Nan’ao Island coastal waters. Aquaculture, 501, 279-284. https://doi.org/10.1016/j.aquaculture.2018.11.047

Macchiavello, J., & Bulboa, C. (2014). Nutrient uptake efficiency of Gracilaria chilensis and Ulva lactuca in an IMTA system with the red abalone Haliotis rufescens. Latin American Journal of Aquatic Research, 42(3), 523-533. https://doi.org/10.3856/vol42-issue3-fulltext-12

MacKereth, F. J. H., Heron, J., & Talling, J. F. (1978). Water analysis: Some revised methods for limnologists. Blackwell Scientific Publications.

Mangott, A., Nappi, J., Carini, A. D. P., Goncalves, P., Hua, K., Domingos, J. A., Nys, R., & Thomas, T. (2020). Ulva lactuca as a functional ingredient and water bioremediator positively influences the hepatopancreas and water microbiota in the rearing of Litopenaeus vannamei. Algal Research, 51, 102040. https://doi.org/10.1016/j.algal.2020.102040

Melo, F. P., Ferreira, M. G. P., Braga, Í. F. M., & Correia, E. S. (2016). Toxicidade do nitrito para o camarão Litopenaeus vannamei cultivado em sistemas de água clara e bioflocos. Boletim do Instituto de Pesca, 42(4), 855-865. https://doi.org/10.20950/1678-2305.2016v42n4p861

Mendoza-López, D. G., Castañeda-Chávez, M. R., Lango-Reynoso, F., Galaviz-Villa, I., Montoya-Mendoza, J., Ponce-Palafox, J. T., Esparza-Leal, H., & Arenas-Fuentes, V. (2017). The effect of biofloc technology (BFT) on water quality in white shrimp Litopenaeus vannamei culture: A review. Revista Bio Ciencias, 4(4), 1-15. https://doi.org/10.15741/revbio.03.01.07

Niu, J., Xie, J. J., Guo, T. Y., Fang, H. H., Zhang, Y. M., Liao, S. Y., Xie, S. W., & Tian, L. X. (2019). Comparison and evaluation of four species of macro-algaes as dietary ingredients in Litopenaeus vannamei under normal rearing and WSSV challenge conditions: Effect on growth, immune response, and intestinal microbiota. Frontiers in Physiology, 9, 1-15. https://doi.org/10.3389/fphys.2018.01880

Øverland, M., Mydland, L. T., & Skrede, A. (2019). Marine macroalgae as sources of protein and bioactive compounds in feed for monogastric animals. Journal of the Science of Food and Agriculture, 99(1), 13-24. https://doi.org/10.1002/jsfa.9143

Samocha, T. M. (2019). Sustainable Biofloc Systems for Marine Shrimp. Academic Press.

Samocha, T. M., Fricker, J., Ali, A. M., Shpigel, M., & Neori, A. (2015). Growth and nutrient uptake of the macroalga Gracilaria tikvahiae cultured with the shrimp Litopenaeus vannamei in an Integrated Multi-Trophic Aquaculture (IMTA) system. Aquaculture, 446, 263–271. https://doi.org/10.1016/j.aquaculture.2015.05.008

Samocha, T. M., Patnaik, S., Speed, M., Ali, A. M., Burger, J. M., Almeida, R. V., Ayub, Z., & Brock, D. L. (2007). Use of molasses as carbon source in limited discharge nursery and grow-out systems for Litopenaeus vannamei. Aquacultural Engineering, 36(2), 184–191. https://doi.org/10.1016/j.aquaeng.2006.10.004

Samocha, T. M., Prangnell, D. I., Hanson, T. R., Treece, G. D., Morris, T. C., Castro, L. F., & Staresinic, N. (2017). Design and operation of super-intensive biofloc-dominated systems for the production of Pacific white shrimp, Litopenaeus vannamei. In The Texas A&M AgriLife Research Experience. The World Aquaculture Society.

Santos, J., Nunes, C. A. R., Tavechio, W. L. G., Ledo, C. A., Macedo, C. F., Pereira, C. M., Santos, A. A., & Santana, I. C. (2020). Efeito do pastoreio do camarão marinho (Litopenaeus vannamei) sobre microrganismos associados a substratos artificiais. Revista Sertão Sustentável, 2(1), 29-34.

Silva, K. R., Wasielesky Jr., W., & Abreu, P. C. (2013). Nitrogen and phosphorus dynamics in the biofloc production of the Pacific white shrimp, Litopenaeus vannamei. Journal of the World Aquaculture Society, 44(1), 30-41. https://doi.org/10.1111/jwas.12009

Susilowati, T., Hutabarat, J., Anggoro, S., Zainuri, M., Sarjito S, Basuki, F., & Yuniarti, T. (2018). The effects of season, aeration and light intensity on the performance of pacific whiteleg shrimp (Litopenaeus vannamei) polycultured with seaweed (Gracilaria verrucosa). IOP Conference Series: Earth and Environmental Science, 137, 012016. https://doi.org/10.1088/1755-1315/137/1/012016

Tabarsa, M., Rezaei, M., Ramezanpour, Z., & Waaland, J. R. (2012). Chemical compositions of the marine algae Gracilaria salicornia (Rhodophyta) and Ulva lactuca (Chlorophyta) as a potential food source. Journal of the Science of Food and Agriculture, 92(12), 2500-2506. https://doi.org/10.1002/jsfa.5659

Tantikitti, C., Chookird, D., & Phongdara, A. (2016). Effects of fishmeal quality on growth performance, protein digestibility and trypsin gene expression in Pacific white shrimp (Litopenaeus vannamei). Songklanakarin Journal of Science and Technology, 38, 73-82.

Teichert-Coddington, D. R., Martinez, D., & Ramı́rez, E. (2000). Partial nutrient budgets for semi-intensive shrimp farms in Honduras. Aquaculture, 190(1-2), 139-154. https://doi.org/10.1016/S0044-8486(00)00389-6

Van Wyk, P., Davis-Hodgkins, M., Laramore, R., Main, K., & Scarpa, J. (1999). Farming marine shrimp in recirculating fresh water systems. Branch Oceanic Institute.

Zhou, T., He, J., Lin Z., & He, L. (2021). Treatment of shrimp effluent by integrated culture of bivalves and macroalgae. Asian Agricultural Research, 13(5), 33-39. https://doi.org/10.22004/ag.econ.316942

Publicado
2025-09-24
Como Citar
Santos, E. P., Lima, P. C. M. de, Oliveira , C. Y. B., Silva , D. L. B., Oliveira, D. W. S., Brandão , B. de C. S., Brito, L. O., & Gálvez, A. O. (2025). Integrated multi-trophic culture of Penaeus vannamei with Gracilaria domingensis in biofloc system. Acta Scientiarum. Biological Sciences, 47(1), e73794. https://doi.org/10.4025/actascibiolsci.v47i1.73794
Seção
Zoologia

Funding data

 

0.6
2019CiteScore
 
 
31st percentile
Powered by  Scopus

 

 

0.6
2019CiteScore
 
 
31st percentile
Powered by  Scopus