Antimicrobial activity and metabolite profiling of a methanolic extract from Stereum rugosum

Palavras-chave: Basidiomycota fungi; antibacterial potential; gram-positive bacteria; secondary metabolites; natural products; mount Halimun Salak National Park.

Resumo

Although Indonesia is recognized as a global biodiversity hotspot, studies on macrofungi and their bioactive metabolites remain limited. This study evaluated the antimicrobial potential of macrofungi collected from Mount Halimun Salak National Park (MHSNP), Indonesia, focusing on species with strong antibacterial activity and their chemical profiles. Of the five species examined, Stereum rugosum exhibited the most potent effect. Its methanolic extract selectively inhibited Gram-positive bacteria, particularly Staphylococcus aureus and Streptococcus mutans, with minimum inhibitory concentrations (MIC) of 6.67 mg mL-1 and 13.33 mg mL-1, and minimum bactericidal concentrations (MBC) of 13.33 mg mL-1 and 26.67 mg mL-1, respectively. No activity was observed against Gram-negative bacteria or Candida albicans. Gas chromatography–mass spectrometry (GC-MS) analysis identified 22 compounds, primarily 2,5-cyclohexadiene-1,4-dione derivatives (24.22%), quinoline (17.07%), and methyl oleate (5.22%), which have all been associated with antimicrobial properties. This study is the first to report on the antimicrobial potential and chemical composition of S. rugosum from MHSNP. The selective inhibition of Gram-positive pathogens, especially S. aureus, establishes S. rugosum as a promising source of bioactive metabolites with potential pharmaceutical applications.

Downloads

Não há dados estatísticos.

Referências

Blanco-Cabra, N., Vega-Granados, K., Moya-Andérico, L., Vukomanovic, M., Parra, A., Álvarez De Cienfuegos, L., & Torrents, E. (2019). Novel oleanolic and maslinic acid derivatives as a promising treatment against bacterial biofilm in nosocomial infections: An in vitro and in vivo study. ACS Infectious Diseases, 5(9), 1581–1589. https://doi.org/10.1021/acsinfecdis.9b00125

Chikezie, I. O. (2017). Determination of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) using a novel dilution tube method. African Journal of Microbiology Research, 11(23), 977–980. https://doi.org/10.5897/ajmr2017.8545

Chopra, H., Mishra, A. K., Baig, A. A., Mohanta, T. K., Mohanta, Y. K., & Baek, K. H. (2021). Narrative review: Bioactive potential of various mushrooms as the treasure of versatile therapeutic natural product. Journal of Fungi, 7(9), 728. https://doi.org/10.3390/jof7090728

Diliarosta, S., Ramadhani, R., & Indriani, D. (2020). Diversity of Pteridophyta in Lubuak Mato Kuciang Padang Panjang, Sumatera Barat. Pharmacognosy Journal, 12(1), 180–185. https://doi.org/10.5530/pj.2020.12.27

Gauba, A., & Rahman, K. M. (2023). Evaluation of antibiotic resistance mechanisms in Gram-negative bacteria. Antibiotics, 12(11). https://doi.org/10.3390/antibiotics12111590

Hossain, T. J. (2024). Methods for screening and evaluation of antimicrobial activity: A review of protocols, advantages, and limitations. European Journal of Microbiology and Immunology, 14(2), 97–115. https://doi.org/10.1556/1886.2024.00035

Hyde, K. D., Saleh, A., Aumentado, H. D. R., Boekhout, T., Bera, I., Khyaju, S., Bhunjun, C. S., Chethana, K. W. T., Phukhamsakda, C., Doilom, M., Thiyagaraja, V., Mortimer, P. E., Maharachchikumbura, S. S. N., Hongsanan, S., Jayawardena, R. S., Dong, W., Jeewon, R., Al-Otibi, F., Wijesinghe, S. N., & Wanasinghe, D. N. (2024). Fungal numbers: Global needs for a realistic assessment. Fungal Diversity, 128(1), 191-225. https://doi.org/10.1007/s13225-024-00545-8

Impey, R. E., Hawkins, D. A., Sutton, J. M., & Soares da Costa, T. P. (2020). Overcoming intrinsic and acquired resistance mechanisms associated with the cell wall of Gram-negative bacteria. Antibiotics, 9(9). https://doi.org/10.3390/antibiotics9090623

Kostić, M., Smiljković, M., Petrović, J., Glamočlija, J., Barros, L., Ferreira, I. C. F. R., Ćirić, A., & Soković, M. (2017). Chemical, nutritive composition and a wide range of bioactive properties of honey mushroom: Armillaria mellea (Vahl: Fr.) Kummer. Food and Function, 8(9), 3239–3249. https://doi.org/10.1039/c7fo00887b

Liao, F., He, J., Li, R., & Hu, Y. (2024). Endophytic fungus UJ3-2 from Urtica fissa: Antibacterial activity and mechanism of action against Staphylococcus aureus. Molecules, 29(20). https://doi.org/10.3390/molecules29204850

Martinez-Medina, G. A., Chávez-González, M. L., Verma, D. K., Prado-Barragán, L. A., Martínez-Hernández, J. L., Flores-Gallegos, A. C., Thakur, M., Srivastav, P. P., & Aguilar, C. N. (2021). Bio-functional components in mushrooms, a health opportunity: Ergothioneine and huitlacoche as recent trends. Journal of Functional Foods, 77. https://doi.org/10.1016/j.jff.2020.104326

Moynihan, E., Mackey, K., Blaskovich, M. A. T., Reen, F. J., & McGlacken, G. (2022). N-Alkyl-2-quinolonopyrones demonstrate antimicrobial activity against ESKAPE pathogens including Staphylococcus aureus. ACS Medicinal Chemistry Letters, 13(8), 1358–1362. https://doi.org/10.1021/acsmedchemlett.2c00185

Nikolic, P., & Mudgil, P. (2023). The cell wall, cell membrane and virulence factors of Staphylococcus aureus and their role in antibiotic resistance. Microorganisms, 11(2). https://doi.org/10.3390/microorganisms11020259

Pasquina-Lemonche, L., Burns, J., Turner, R. D., Kumar, S., Tank, R., Mullin, N., Wilson, J. S., Chakrabarti, B., Bullough, P. A., Foster, S. J., & Hobbs, J. K. (2020). The architecture of the Gram-positive bacterial cell wall. Nature, 582(7811), 294–297. https://doi.org/10.1038/s41586-020-2236-6

Qureshi, K. A., Imtiaz, M., Parvez, A., Rai, P. K., Jaremko, M., Emwas, A. H., Bholay, A. D., & Fatmi, M. Q. (2022). In vitro and in silico approaches for the evaluation of antimicrobial activity, time-kill kinetics, and anti-biofilm potential of thymoquinone (2-methyl-5-propan-2-ylcyclohexa-2, 5-diene-1,4-dione) against selected human pathogens. Antibiotics, 11(1). https://doi.org/10.3390/antibiotics11010079

Rahi, D. K., & Malik, D. (2016). Diversity of mushrooms and their metabolites of nutraceutical and therapeutic significance. Journal of Mycology, 2016. https://doi.org/10.1155/2016/7654123

Rahman, N. F., Nursamsiar, N., Megawati, M., Handayani, H., & Suares, C. A. M. (2022). Total Phenolic and Flavonoid Contents and Antioxidant Activity of Kembang Bulan Leaves (Tithonia diversifolia (Hemsley) A. Gray). Indonesian Journal of Pharmaceutical Science and Technology, 1(1), 57. https://doi.org/10.24198/ijpst.v1i1.36900

Retnowati, A., Rugayah, Rahajoe, J. S., & Arifiani, D. (2019). Status keanekaragaman hayati Indonesia: Kekayaan jenis tumbuhan Indonesia. LIPI Press.

Spatafora, J. W., Aime, M. C., Gregoriev, I. V., Martin, F., Stajich, J. E., & Blackwell, M. (2017). The fungal tree of life: From molecular systematics to genome-scale phylogenies. In The Fungal Kingdom (Vol. 2, pp. 3–34). https://doi.org/10.1128/9781555819583.ch1

Sun, J., Liu, B., Rustiami, H., Xiao, H., Shen, X., & Ma, K. (2024). Mapping Asia plants: Plant diversity and a checklist of vascular plants in Indonesia. Plants, 13(16). https://doi.org/10.3390/plants13162281

Sun, X., Feng, X., Zheng, D., Li, A., Li, C., Li, S., & Zhao, Z. (2019). Ergosterol attenuates cigarette smoke extract-induced COPD by modulating inflammation, oxidative stress and apoptosis in vitro and in vivo. Clinical Science, 133(13), 1523–1536. https://doi.org/10.1042/CS20190331

Tian, M., Zhao, P., Li, G., & Zhang, K. (2020). In-depth natural product discovery from the basidiomycetes Stereum species. Microorganisms, 8(7). https://doi.org/10.3390/microorganisms8071049

van de Lagemaat, M., Stockbroekx, V., Geertsema-Doornbusch, G. I., Dijk, M., Carniello, V., Woudstra, W., van der Mei, H. C., Busscher, H. J., & Ren, Y. (2022). A comparison of the adaptive response of Staphylococcus aureus vs. Streptococcus mutans and the development of chlorhexidine resistance. Frontiers in Microbiology, 13. https://doi.org/10.3389/fmicb.2022.861890

Weinstein, M. P., Lewis II, J. S., Bobenchik, A. M., Campeau, S., Cullen, S. K., Galas, M. F., Gold, H., Humphries, R. M., Kirn, T. J., Limbago, B., Mathers, A. J., Mazzulli, T., Satlin, M., Schuetz, A. N., Simner, P. J., & Tamma, P. D. (2020). Standards for antimicrobial susceptibility testing (30th ed.). Clinical and Laboratory Standards Institute.

Wu, B., Hussain, M., Zhang, W., Stadler, M., Liu, X., & Xiang, M. (2019). Current insights into fungal species diversity and perspective on naming the environmental DNA sequences of fungi. Mycology, 10(3), 127–140. https://doi.org/10.1080/21501203.2019.1614106

Zhao, C., Fan, J., Liu, Y., Guo, W., Cao, H., Xiao, J., Wang, Y., & Liu, B. (2019). Hepatoprotective activity of Ganoderma lucidum triterpenoids in alcohol-induced liver injury in mice, an iTRAQ-based proteomic analysis. Food Chemistry, 271, 148–156. https://doi.org/10.1016/j.foodchem.2018.07.115

Publicado
2025-11-25
Como Citar
Sari, B. A., Noverita, & Sinaga, E. (2025). Antimicrobial activity and metabolite profiling of a methanolic extract from Stereum rugosum . Acta Scientiarum. Biological Sciences, 47(1), e75603. https://doi.org/10.4025/actascibiolsci.v47i1.75603
Seção
Biotecnologia

 

0.6
2019CiteScore
 
 
31st percentile
Powered by  Scopus

 

 

0.6
2019CiteScore
 
 
31st percentile
Powered by  Scopus