Antimicrobial activity and metabolite profiling of a methanolic extract from Stereum rugosum
Resumo
Although Indonesia is recognized as a global biodiversity hotspot, studies on macrofungi and their bioactive metabolites remain limited. This study evaluated the antimicrobial potential of macrofungi collected from Mount Halimun Salak National Park (MHSNP), Indonesia, focusing on species with strong antibacterial activity and their chemical profiles. Of the five species examined, Stereum rugosum exhibited the most potent effect. Its methanolic extract selectively inhibited Gram-positive bacteria, particularly Staphylococcus aureus and Streptococcus mutans, with minimum inhibitory concentrations (MIC) of 6.67 mg mL-1 and 13.33 mg mL-1, and minimum bactericidal concentrations (MBC) of 13.33 mg mL-1 and 26.67 mg mL-1, respectively. No activity was observed against Gram-negative bacteria or Candida albicans. Gas chromatography–mass spectrometry (GC-MS) analysis identified 22 compounds, primarily 2,5-cyclohexadiene-1,4-dione derivatives (24.22%), quinoline (17.07%), and methyl oleate (5.22%), which have all been associated with antimicrobial properties. This study is the first to report on the antimicrobial potential and chemical composition of S. rugosum from MHSNP. The selective inhibition of Gram-positive pathogens, especially S. aureus, establishes S. rugosum as a promising source of bioactive metabolites with potential pharmaceutical applications.
Downloads
Referências
Blanco-Cabra, N., Vega-Granados, K., Moya-Andérico, L., Vukomanovic, M., Parra, A., Álvarez De Cienfuegos, L., & Torrents, E. (2019). Novel oleanolic and maslinic acid derivatives as a promising treatment against bacterial biofilm in nosocomial infections: An in vitro and in vivo study. ACS Infectious Diseases, 5(9), 1581–1589. https://doi.org/10.1021/acsinfecdis.9b00125
Chikezie, I. O. (2017). Determination of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) using a novel dilution tube method. African Journal of Microbiology Research, 11(23), 977–980. https://doi.org/10.5897/ajmr2017.8545
Chopra, H., Mishra, A. K., Baig, A. A., Mohanta, T. K., Mohanta, Y. K., & Baek, K. H. (2021). Narrative review: Bioactive potential of various mushrooms as the treasure of versatile therapeutic natural product. Journal of Fungi, 7(9), 728. https://doi.org/10.3390/jof7090728
Diliarosta, S., Ramadhani, R., & Indriani, D. (2020). Diversity of Pteridophyta in Lubuak Mato Kuciang Padang Panjang, Sumatera Barat. Pharmacognosy Journal, 12(1), 180–185. https://doi.org/10.5530/pj.2020.12.27
Gauba, A., & Rahman, K. M. (2023). Evaluation of antibiotic resistance mechanisms in Gram-negative bacteria. Antibiotics, 12(11). https://doi.org/10.3390/antibiotics12111590
Hossain, T. J. (2024). Methods for screening and evaluation of antimicrobial activity: A review of protocols, advantages, and limitations. European Journal of Microbiology and Immunology, 14(2), 97–115. https://doi.org/10.1556/1886.2024.00035
Hyde, K. D., Saleh, A., Aumentado, H. D. R., Boekhout, T., Bera, I., Khyaju, S., Bhunjun, C. S., Chethana, K. W. T., Phukhamsakda, C., Doilom, M., Thiyagaraja, V., Mortimer, P. E., Maharachchikumbura, S. S. N., Hongsanan, S., Jayawardena, R. S., Dong, W., Jeewon, R., Al-Otibi, F., Wijesinghe, S. N., & Wanasinghe, D. N. (2024). Fungal numbers: Global needs for a realistic assessment. Fungal Diversity, 128(1), 191-225. https://doi.org/10.1007/s13225-024-00545-8
Impey, R. E., Hawkins, D. A., Sutton, J. M., & Soares da Costa, T. P. (2020). Overcoming intrinsic and acquired resistance mechanisms associated with the cell wall of Gram-negative bacteria. Antibiotics, 9(9). https://doi.org/10.3390/antibiotics9090623
Kostić, M., Smiljković, M., Petrović, J., Glamočlija, J., Barros, L., Ferreira, I. C. F. R., Ćirić, A., & Soković, M. (2017). Chemical, nutritive composition and a wide range of bioactive properties of honey mushroom: Armillaria mellea (Vahl: Fr.) Kummer. Food and Function, 8(9), 3239–3249. https://doi.org/10.1039/c7fo00887b
Liao, F., He, J., Li, R., & Hu, Y. (2024). Endophytic fungus UJ3-2 from Urtica fissa: Antibacterial activity and mechanism of action against Staphylococcus aureus. Molecules, 29(20). https://doi.org/10.3390/molecules29204850
Martinez-Medina, G. A., Chávez-González, M. L., Verma, D. K., Prado-Barragán, L. A., Martínez-Hernández, J. L., Flores-Gallegos, A. C., Thakur, M., Srivastav, P. P., & Aguilar, C. N. (2021). Bio-functional components in mushrooms, a health opportunity: Ergothioneine and huitlacoche as recent trends. Journal of Functional Foods, 77. https://doi.org/10.1016/j.jff.2020.104326
Moynihan, E., Mackey, K., Blaskovich, M. A. T., Reen, F. J., & McGlacken, G. (2022). N-Alkyl-2-quinolonopyrones demonstrate antimicrobial activity against ESKAPE pathogens including Staphylococcus aureus. ACS Medicinal Chemistry Letters, 13(8), 1358–1362. https://doi.org/10.1021/acsmedchemlett.2c00185
Nikolic, P., & Mudgil, P. (2023). The cell wall, cell membrane and virulence factors of Staphylococcus aureus and their role in antibiotic resistance. Microorganisms, 11(2). https://doi.org/10.3390/microorganisms11020259
Pasquina-Lemonche, L., Burns, J., Turner, R. D., Kumar, S., Tank, R., Mullin, N., Wilson, J. S., Chakrabarti, B., Bullough, P. A., Foster, S. J., & Hobbs, J. K. (2020). The architecture of the Gram-positive bacterial cell wall. Nature, 582(7811), 294–297. https://doi.org/10.1038/s41586-020-2236-6
Qureshi, K. A., Imtiaz, M., Parvez, A., Rai, P. K., Jaremko, M., Emwas, A. H., Bholay, A. D., & Fatmi, M. Q. (2022). In vitro and in silico approaches for the evaluation of antimicrobial activity, time-kill kinetics, and anti-biofilm potential of thymoquinone (2-methyl-5-propan-2-ylcyclohexa-2, 5-diene-1,4-dione) against selected human pathogens. Antibiotics, 11(1). https://doi.org/10.3390/antibiotics11010079
Rahi, D. K., & Malik, D. (2016). Diversity of mushrooms and their metabolites of nutraceutical and therapeutic significance. Journal of Mycology, 2016. https://doi.org/10.1155/2016/7654123
Rahman, N. F., Nursamsiar, N., Megawati, M., Handayani, H., & Suares, C. A. M. (2022). Total Phenolic and Flavonoid Contents and Antioxidant Activity of Kembang Bulan Leaves (Tithonia diversifolia (Hemsley) A. Gray). Indonesian Journal of Pharmaceutical Science and Technology, 1(1), 57. https://doi.org/10.24198/ijpst.v1i1.36900
Retnowati, A., Rugayah, Rahajoe, J. S., & Arifiani, D. (2019). Status keanekaragaman hayati Indonesia: Kekayaan jenis tumbuhan Indonesia. LIPI Press.
Spatafora, J. W., Aime, M. C., Gregoriev, I. V., Martin, F., Stajich, J. E., & Blackwell, M. (2017). The fungal tree of life: From molecular systematics to genome-scale phylogenies. In The Fungal Kingdom (Vol. 2, pp. 3–34). https://doi.org/10.1128/9781555819583.ch1
Sun, J., Liu, B., Rustiami, H., Xiao, H., Shen, X., & Ma, K. (2024). Mapping Asia plants: Plant diversity and a checklist of vascular plants in Indonesia. Plants, 13(16). https://doi.org/10.3390/plants13162281
Sun, X., Feng, X., Zheng, D., Li, A., Li, C., Li, S., & Zhao, Z. (2019). Ergosterol attenuates cigarette smoke extract-induced COPD by modulating inflammation, oxidative stress and apoptosis in vitro and in vivo. Clinical Science, 133(13), 1523–1536. https://doi.org/10.1042/CS20190331
Tian, M., Zhao, P., Li, G., & Zhang, K. (2020). In-depth natural product discovery from the basidiomycetes Stereum species. Microorganisms, 8(7). https://doi.org/10.3390/microorganisms8071049
van de Lagemaat, M., Stockbroekx, V., Geertsema-Doornbusch, G. I., Dijk, M., Carniello, V., Woudstra, W., van der Mei, H. C., Busscher, H. J., & Ren, Y. (2022). A comparison of the adaptive response of Staphylococcus aureus vs. Streptococcus mutans and the development of chlorhexidine resistance. Frontiers in Microbiology, 13. https://doi.org/10.3389/fmicb.2022.861890
Weinstein, M. P., Lewis II, J. S., Bobenchik, A. M., Campeau, S., Cullen, S. K., Galas, M. F., Gold, H., Humphries, R. M., Kirn, T. J., Limbago, B., Mathers, A. J., Mazzulli, T., Satlin, M., Schuetz, A. N., Simner, P. J., & Tamma, P. D. (2020). Standards for antimicrobial susceptibility testing (30th ed.). Clinical and Laboratory Standards Institute.
Wu, B., Hussain, M., Zhang, W., Stadler, M., Liu, X., & Xiang, M. (2019). Current insights into fungal species diversity and perspective on naming the environmental DNA sequences of fungi. Mycology, 10(3), 127–140. https://doi.org/10.1080/21501203.2019.1614106
Zhao, C., Fan, J., Liu, Y., Guo, W., Cao, H., Xiao, J., Wang, Y., & Liu, B. (2019). Hepatoprotective activity of Ganoderma lucidum triterpenoids in alcohol-induced liver injury in mice, an iTRAQ-based proteomic analysis. Food Chemistry, 271, 148–156. https://doi.org/10.1016/j.foodchem.2018.07.115
Copyright (c) 2025 Bunga Anggreini Sari, Noverita, Ernawati Sinaga (Autor)

This work is licensed under a Creative Commons Attribution 4.0 International License.
DECLARAÇÃO DE ORIGINALIDADE E DIREITOS AUTORAIS
Declaro que o presente artigo é original, não tendo sido submetido à publicação em qualquer outro periódico nacional ou internacional, quer seja em parte ou em sua totalidade.
Os direitos autorais pertencem exclusivamente aos autores. Os direitos de licenciamento utilizados pelo periódico é a licença Creative Commons Attribution 4.0 (CC BY 4.0): são permitidos o compartilhamento (cópia e distribuição do material em qualqer meio ou formato) e adaptação (remix, transformação e criação de material a partir do conteúdo assim licenciado para quaisquer fins, inclusive comerciais.
Recomenda-se a leitura desse link para maiores informações sobre o tema: fornecimento de créditos e referências de forma correta, entre outros detalhes cruciais para uso adequado do material licenciado.


1.png)



3.png)











