<b><em>In vitro</em> ZnCl<sub>2</sub> cytotoxicity and genotoxicity in human leukocytes: Zero-order kinetic cellular zinc influx
Abstract
Zinc (Zn) is an essential trace element for cellular viability, but concentrations above physiologic level may lead to cellular damage. The purpose of the present study was to evaluate the in vitro ZnCl2 genotoxicity and cytotoxicity in human leukocyte cells. This was assessed in an unprecedented way that correlated the level of intracellular Zn after cell exposition with the cellular damage. The exposure to increased Zn concentrations (2.5-20 µg mL-1), showed significantly reduced cellular leukocyte viability. However, significant DNA damages were observed only when the Zn exposure concentrations were from 10-20 µg mL-1. The Zn intracellular levels found in leukocytes was from 72.25-268.9 ρg cell-1, starting to induce cytotoxicity and genotoxicity at concentrations of 95.68 and 126.2 ρg cell-1, respectively. The relationship between the exposure concentration and intracellular levels of Zn suggests that the influx of Zn, in the form of ZnCl2, occurs in human leukocytes under zero-order kinetics.
Downloads
DECLARATION OF ORIGINALITY AND COPYRIGHTS
I Declare that current article is original and has not been submitted for publication, in part or in whole, to any other national or international journal.
The copyrights belong exclusively to the authors. Published content is licensed under Creative Commons Attribution 4.0 (CC BY 4.0) guidelines, which allows sharing (copy and distribution of the material in any medium or format) and adaptation (remix, transform, and build upon the material) for any purpose, even commercially, under the terms of attribution.
Read this link for further information on how to use CC BY 4.0 properly.