Fixed point theorem in fuzzy metric space
Abstract
In this paper we prove a fixed point theorem on a fuzzy set defining a new class of fuzzy metric space as structure fuzzy metric space.Downloads
References
J.X.Feng, On fixed point theorem in fuzzy metric space, Fuzzy sets and Systems, 46(1992), 107-113.
K. Kuratowski, Topology I, Warsaw, 1933.
M. Grabeic, Fixed points in fuzzy metric spaces, Fuzzy sets and systems, 27(1988), 385-389.
R. Vasuki, Common fixed point theorem in fuzzy metric space, Fuzzy sets and systems, 97(1998), 395-397.
L.A. Zadeh, Fuzzy sets, Inform. Control, 8(1965),338-353.
B. Schweizer and A. Sklar, Statistical metric space, Pacific Jour. Math, 10(1960), 314-334.
A. George and P. Veeramani, On some results in fuzzy metric space, Fuzzy sets and systems, 64(1997), 395-399.
Z.K.Deng, Fuzzy pseudo-metric space, J. Math. Anal. Appl, 86(1982), 191-207.
M.A. Erceg, Metric spaces in fuzzy set theory, J. Math. Anal. Appl, 69(1979), 205-230.
Y.J.Cho, Fixed point in fuzzy metric space, J. Fuzzy math, 5(1997), 940-962.
S. Banach, Theories les operation linearies, Manograie Mathematyezne, Warsaw, Poland, 1932.
O. Kramosil and J. Michalek, Fuzzy metric and statistical metric space, Kybernatika,11(1975), 326-334.
M.Edelstein, On fixed and periodic points under contraction mapping, J.London Math.Soc, 37(1962), 74-79.
J.F.Nash, Equilibrium points in n-person games, PNAS, 36(1950), 48-49.
S. Kakutani, A generalization of Brouwer’s fixed point theorem, Duke Math. Jour, 8(1941), 457-459.
B.C. Tripathy, S. Paul and N.R. Das, Banach’s and Kannan’s fixed point results in fuzzy 2-metric spaces, Proyecciones J. Math., 32(4),(2013), 363-379.
B.C. Tripathy, S. Paul and N.R. Das, A fixed point theorem in a generalized fuzzy metric space, Boletim da Sociedade Paranaense de Matematica, 32(2)(2014), 221-227.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).