Fixed point theorem in fuzzy metric space

  • Santanu Acharjee Institute of Advanced Study in Science and Technology Mathematical Sciences Division
Keywords: Fixed point, Fuzzy metric, continuous, t-norm

Abstract

In this paper we prove  a fixed point theorem on a fuzzy set defining a new class of fuzzy metric space as structure fuzzy metric space.

Downloads

Download data is not yet available.

Author Biography

Santanu Acharjee, Institute of Advanced Study in Science and Technology Mathematical Sciences Division
Mathematical Sciences Division

References

J.X.Feng, On fixed point theorem in fuzzy metric space, Fuzzy sets and Systems, 46(1992), 107-113.

K. Kuratowski, Topology I, Warsaw, 1933.

M. Grabeic, Fixed points in fuzzy metric spaces, Fuzzy sets and systems, 27(1988), 385-389.

R. Vasuki, Common fixed point theorem in fuzzy metric space, Fuzzy sets and systems, 97(1998), 395-397.

L.A. Zadeh, Fuzzy sets, Inform. Control, 8(1965),338-353.

B. Schweizer and A. Sklar, Statistical metric space, Pacific Jour. Math, 10(1960), 314-334.

A. George and P. Veeramani, On some results in fuzzy metric space, Fuzzy sets and systems, 64(1997), 395-399.

Z.K.Deng, Fuzzy pseudo-metric space, J. Math. Anal. Appl, 86(1982), 191-207.

M.A. Erceg, Metric spaces in fuzzy set theory, J. Math. Anal. Appl, 69(1979), 205-230.

Y.J.Cho, Fixed point in fuzzy metric space, J. Fuzzy math, 5(1997), 940-962.

S. Banach, Theories les operation linearies, Manograie Mathematyezne, Warsaw, Poland, 1932.

O. Kramosil and J. Michalek, Fuzzy metric and statistical metric space, Kybernatika,11(1975), 326-334.

M.Edelstein, On fixed and periodic points under contraction mapping, J.London Math.Soc, 37(1962), 74-79.

J.F.Nash, Equilibrium points in n-person games, PNAS, 36(1950), 48-49.

S. Kakutani, A generalization of Brouwer’s fixed point theorem, Duke Math. Jour, 8(1941), 457-459.

B.C. Tripathy, S. Paul and N.R. Das, Banach’s and Kannan’s fixed point results in fuzzy 2-metric spaces, Proyecciones J. Math., 32(4),(2013), 363-379.

B.C. Tripathy, S. Paul and N.R. Das, A fixed point theorem in a generalized fuzzy metric space, Boletim da Sociedade Paranaense de Matematica, 32(2)(2014), 221-227.

Published
2015-05-06
Section
Articles