Tauberian conditions under which statistical convergence follows from statistical summability $(EC)_{n}^1$

Resumen

Let $(x_k)$, for $k\in \mathbb{N}\cup \{0\}$  be a sequence of real or complex numbers and set $(EC)_{n}^{1}=\frac{1}{2^n}\sum_{j=0}^{n}{\binom{n}{j}\frac{1}{j+1}\sum_{v=0}^{j}{x_v}},$ $n\in \mathbb{N}\cup \{0\}.$  We present necessary and sufficient conditions, under which $st-\lim_{}{x_k}= L$ follows from $st-\lim_{}{(EC)_{n}^{1}} = L,$ where L is a finite number. If $(x_k)$ is a sequence of real numbers, then these are one-sided Tauberian conditions. If $(x_k)$ is a sequence of complex numbers, then these are two-sided Tauberian conditions.

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

Naim L. Braha, College Vizioni per Arsim Department of Computer Sciences and Applied Mathematics
Republic of Kosovo
Ismet Temaj, University of Prizren Faculty of Education
Republic of Kosovo
Publicado
2018-01-09
Sección
Research Articles