Tauberian conditions under which statistical convergence follows from statistical summability $(EC)_{n}^1$

Résumé

Let $(x_k)$, for $k\in \mathbb{N}\cup \{0\}$  be a sequence of real or complex numbers and set $(EC)_{n}^{1}=\frac{1}{2^n}\sum_{j=0}^{n}{\binom{n}{j}\frac{1}{j+1}\sum_{v=0}^{j}{x_v}},$ $n\in \mathbb{N}\cup \{0\}.$  We present necessary and sufficient conditions, under which $st-\lim_{}{x_k}= L$ follows from $st-\lim_{}{(EC)_{n}^{1}} = L,$ where L is a finite number. If $(x_k)$ is a sequence of real numbers, then these are one-sided Tauberian conditions. If $(x_k)$ is a sequence of complex numbers, then these are two-sided Tauberian conditions.

Téléchargements

Les données sur le téléchargement ne sont pas encore disponible.

Bibliographies de l'auteur

Naim L. Braha, College Vizioni per Arsim Department of Computer Sciences and Applied Mathematics
Republic of Kosovo
Ismet Temaj, University of Prizren Faculty of Education
Republic of Kosovo
Publiée
2018-01-09
Rubrique
Articles