Converegence of a series leading to an analogue of Ramanujan's assertion on squarefree integers
Résumé
Let d be a squarefree integer. We prove that(i) Pn
μ(n)
n
d(n′) converges to zero, where n′ is the product of prime divisors of n
with ( d
n ) = +1. We use the Prime Number Theorem.
(ii) Q( d
p )=+1(1 −
1
ps ) is not analytic at s=1, nor is Q( d
p )=−1(1 −
1
ps ) .
(iii) The convergence (i) leads to a proof that asymptotically half the squarefree ideals have an even number of prime ideal factors (analogue of Ramanujan’s assertion).
Téléchargements
Les données sur le téléchargement ne sont pas encore disponible.
Publiée
2018-02-19
Numéro
Rubrique
Articles
Copyright (c) 2018 Boletim da Sociedade Paranaense de Matemática

Ce travail est disponible sous la licence Creative Commons Attribution 4.0 International .
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).