Converegence of a series leading to an analogue of Ramanujan's assertion on squarefree integers
Resumen
Let d be a squarefree integer. We prove that(i) Pn
μ(n)
n
d(n′) converges to zero, where n′ is the product of prime divisors of n
with ( d
n ) = +1. We use the Prime Number Theorem.
(ii) Q( d
p )=+1(1 −
1
ps ) is not analytic at s=1, nor is Q( d
p )=−1(1 −
1
ps ) .
(iii) The convergence (i) leads to a proof that asymptotically half the squarefree ideals have an even number of prime ideal factors (analogue of Ramanujan’s assertion).
Descargas
La descarga de datos todavía no está disponible.
Publicado
2018-02-19
Número
Sección
Articles
Derechos de autor 2018 Boletim da Sociedade Paranaense de Matemática

Esta obra está bajo licencia internacional Creative Commons Reconocimiento 4.0.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).