Stability in mixed linear delay Levin-Nohel integro-dynamic equations on time scales
Résumé
In this paper we use the contraction mapping theorem to obtain asymptotic stability results about the zero solution for the following mixed linear delay Levin-Nohel integro-dynamic equationx^{Δ}(t)+∫_{t-r(t)}^{t}a(t,s)x(s)Δs+b(t)x(t-h(t))=0, t∈[t₀,∞)∩T,
where f^{△} is the △-derivative on T. An asymptotic stability theorem with a necessary and sufficient condition is proved. The results obtained here extend the work of Dung <cite>d</cite>. In addition, the case of the equation with several delays is studied.
Téléchargements
Les données sur le téléchargement ne sont pas encore disponible.
Publiée
2019-03-31
Numéro
Rubrique
Articles
Copyright (c) 2019 Boletim da Sociedade Paranaense de Matemática

Ce travail est disponible sous licence Creative Commons Attribution - Pas d'Utilisation Commerciale - Pas de Modification 4.0 International.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).