Stability in mixed linear delay Levin-Nohel integro-dynamic equations on time scales
Resumen
In this paper we use the contraction mapping theorem to obtain asymptotic stability results about the zero solution for the following mixed linear delay Levin-Nohel integro-dynamic equationx^{Δ}(t)+∫_{t-r(t)}^{t}a(t,s)x(s)Δs+b(t)x(t-h(t))=0, t∈[t₀,∞)∩T,
where f^{△} is the △-derivative on T. An asymptotic stability theorem with a necessary and sufficient condition is proved. The results obtained here extend the work of Dung <cite>d</cite>. In addition, the case of the equation with several delays is studied.
Descargas
La descarga de datos todavía no está disponible.
Publicado
2019-03-31
Número
Sección
Research Articles
Derechos de autor 2019 Boletim da Sociedade Paranaense de Matemática

Esta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial-SinObrasDerivadas 4.0.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).



