Characterization of the w-Tempered ultradistributions

  • Ibraheem Amohammad Abu-Falahah Hashemite University
  • Hamed M. Obiedat Hashemite University

Resumo

We use apreviously obtained characterization of test functions of w-Tempered Ultradistributions to charcterize the space w-Tempered Ultradistributions using Riesz representation Theorem. 

Downloads

Não há dados estatísticos.

Biografia do Autor

Ibraheem Amohammad Abu-Falahah, Hashemite University

Department of mathematics

Hashemite University, P.O.Box 150459

Referências

J. Alvarez, H. Obiedat, Characterizations of the Schwartz space S and the Beurling-Bjorck space Sw, Cubo 6 (2004) 167-183.

A. Beurling, On quasi-analiticity and general distributions, Notes by P.L. Duren, lectures delivered at the AMS Summer Institute on Functional Analysis, Stanford University, August 1961.

G. Bjorck, Linear partial differential operators and generalized distributions,Ark. Mat. 6 (1965-1967) 351-407.

S. Y. Chung, D. Kim, S. Lee. Characterizations for Beurling-Bjorck space and Schwartz space. Proc. Amer. Math. Soc. 125 (1997), 3229-3234.

D. Gabor. Theory of communication. J. IEE (London), 93(III): 429-457, November 19.

K. Grochenig, G. Zimmermann. Hardy’s theorem and the short-time Fourier transform of Schwartz functions. J. London Math. Soc. 63 (2001), 205-214.

K. Grochenig, G. Zimmermann. Spaces of test functions via the STFT. Function Spaces Appl. 2 (2004), 25-53.

H. Obiedat, A topological characterization of the Beurling- Bjorck space Sw using short-time Fourier transform, Cubo 8 (2006), 33-45.

W. Rudin, Functional Analysis, Second Edition, McGraw-Hill Inc., 1991.

L. Schwartz, Theorie des distributions, Hermann, Paris, 1966.

Publicado
2020-10-08
Seção
Artigos

Funding data