Characterization of the w-Tempered ultradistributions
Abstract
We use apreviously obtained characterization of test functions of w-Tempered Ultradistributions to charcterize the space w-Tempered Ultradistributions using Riesz representation Theorem.
Downloads
References
J. Alvarez, H. Obiedat, Characterizations of the Schwartz space S and the Beurling-Bjorck space Sw, Cubo 6 (2004) 167-183.
A. Beurling, On quasi-analiticity and general distributions, Notes by P.L. Duren, lectures delivered at the AMS Summer Institute on Functional Analysis, Stanford University, August 1961.
G. Bjorck, Linear partial differential operators and generalized distributions,Ark. Mat. 6 (1965-1967) 351-407.
S. Y. Chung, D. Kim, S. Lee. Characterizations for Beurling-Bjorck space and Schwartz space. Proc. Amer. Math. Soc. 125 (1997), 3229-3234.
D. Gabor. Theory of communication. J. IEE (London), 93(III): 429-457, November 19.
K. Grochenig, G. Zimmermann. Hardy’s theorem and the short-time Fourier transform of Schwartz functions. J. London Math. Soc. 63 (2001), 205-214.
K. Grochenig, G. Zimmermann. Spaces of test functions via the STFT. Function Spaces Appl. 2 (2004), 25-53.
H. Obiedat, A topological characterization of the Beurling- Bjorck space Sw using short-time Fourier transform, Cubo 8 (2006), 33-45.
W. Rudin, Functional Analysis, Second Edition, McGraw-Hill Inc., 1991.
L. Schwartz, Theorie des distributions, Hermann, Paris, 1966.
Copyright (c) 2020 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).