Finitely generated rings obtained from hyperrings through the fundamental relations
Resumen
In this article, we introduce and analyze a strongly regular relation $\omega^{*}_{\mathcal{A}}$ on a hyperring
$R$ such that in a particular case we have $|R/\omega^{*}_{\mathcal{A}}|\leq 2$ or
$R/\omega^{*}_{\mathcal{A}}=<\omega^{*}_{\mathcal{A}}(a)>$, i.e., $R/\omega^{*}_{\mathcal{A}}$ is a finite generated ring. Then, by using the notion of $\omega^{*}_{\mathcal{A}}$-parts, we investigate the transitivity condition of $\omega_{\mathcal{A}}$. Finally, we investigate a strongly regular relation $\chi^{*}_{\mathcal{A}}$ on the hyperring $R$ such that $R/\chi^{*}_{\mathcal{A}}$ is a commutative ring with finite generated.
Descargas
Citas
Babaei, Jafarpour, M., Mousavi, S.Sh., ℜ-parts in hyperrings, Iranian J. Math. Sci. and Info. 7(1), 59-71, (2012).
Corsini, P., Prolegomena of Hypergroup Theory, Aviani Editore, Italy, (1993).
Corsini, P., Leoreanu, V., Applications of Hyperstructure Theory, Advances in Mathematics, Kluwer Academic Publishers, (2003). DOI: https://doi.org/10.1007/978-1-4757-3714-1
Davvaz, B., Isomorphism theorems of hyperrings, Indian J. Pure Appl. Math. 35(3), 321-331, (2004).
Davvaz, B., Leoreanu-Fotea, V., Hyperring Theory and Applications, International Academic Press, USA, (2007).
Davvaz, B., Vougiouklis, T., Commutative rings obtained from hyperrings (Hv-rings) with α∗-relations, Comm. Algebra, 35(11), 3307-3320, (2007). DOI: https://doi.org/10.1080/00927870701410629
Freni, D., A new characterization of the derived hypergroup via strongly regular equivalences, Comm. Algebra, 30(8), 3977-3989, (2002). DOI: https://doi.org/10.1081/AGB-120005830
Krasner, M., A class of hyperrings and hyperfields, Intern. J. Math. Math. Sci., 6(2), 307-312, (1983). DOI: https://doi.org/10.1155/S0161171283000265
Marty, F., Sur une generalization de la notion de groupe, 8iem congres Math. Scandinaves, Stockholm, 45-49, (1934).
Mirvakili, S., Anvariyeh, S.M., Davvaz, B., Transitivity of γ-relation on hyperfields, Bull. Math. Soc. Sci. Math. Roumanie, Tome 51(99), 233-243, (2008).
Mirvakili, S., Anvariyeh, S.M., Davvaz, B., On α-relation and transitivity conditions of α, Comm. Algebra 36, 1695–1703, (2008). DOI: https://doi.org/10.1080/00927870801937364
Mirvakili, S., Davvaz, B., Relationship between rings and hyperrings by using the notion of Fundamental relations, Comm. Algebra 41(1) (2013), 70-82. DOI: https://doi.org/10.1080/00927872.2011.622731
Norouzi, M., Cristea, I., Fundamental relation on m-idempotent hyperrings, Open Math. 15, 1558-1567, (2017). DOI: https://doi.org/10.1515/math-2017-0128
Vougiouklis, T., Representations of hypergroups, hypermatrices, Rivista di mat. Pure ed Appl. 2, 7-19, (1987).
Vougiouklis, T., The fundamental relation in hyperrings. The general hyperfield, Proc. Fourth Int. Congress on Algebraic Hyperstructures and Applications (AHA 1990), World Scientific, 203-211, (1991). DOI: https://doi.org/10.1142/9789814539555
Derechos de autor 2020 Boletim da Sociedade Paranaense de Matemática

Esta obra está bajo licencia internacional Creative Commons Reconocimiento 4.0.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).