Finitely generated rings obtained from hyperrings through the fundamental relations
Résumé
In this article, we introduce and analyze a strongly regular relation $\omega^{*}_{\mathcal{A}}$ on a hyperring
$R$ such that in a particular case we have $|R/\omega^{*}_{\mathcal{A}}|\leq 2$ or
$R/\omega^{*}_{\mathcal{A}}=<\omega^{*}_{\mathcal{A}}(a)>$, i.e., $R/\omega^{*}_{\mathcal{A}}$ is a finite generated ring. Then, by using the notion of $\omega^{*}_{\mathcal{A}}$-parts, we investigate the transitivity condition of $\omega_{\mathcal{A}}$. Finally, we investigate a strongly regular relation $\chi^{*}_{\mathcal{A}}$ on the hyperring $R$ such that $R/\chi^{*}_{\mathcal{A}}$ is a commutative ring with finite generated.
Téléchargements
Références
Babaei, Jafarpour, M., Mousavi, S.Sh., ℜ-parts in hyperrings, Iranian J. Math. Sci. and Info. 7(1), 59-71, (2012).
Corsini, P., Prolegomena of Hypergroup Theory, Aviani Editore, Italy, (1993).
Corsini, P., Leoreanu, V., Applications of Hyperstructure Theory, Advances in Mathematics, Kluwer Academic Publishers, (2003). DOI: https://doi.org/10.1007/978-1-4757-3714-1
Davvaz, B., Isomorphism theorems of hyperrings, Indian J. Pure Appl. Math. 35(3), 321-331, (2004).
Davvaz, B., Leoreanu-Fotea, V., Hyperring Theory and Applications, International Academic Press, USA, (2007).
Davvaz, B., Vougiouklis, T., Commutative rings obtained from hyperrings (Hv-rings) with α∗-relations, Comm. Algebra, 35(11), 3307-3320, (2007). DOI: https://doi.org/10.1080/00927870701410629
Freni, D., A new characterization of the derived hypergroup via strongly regular equivalences, Comm. Algebra, 30(8), 3977-3989, (2002). DOI: https://doi.org/10.1081/AGB-120005830
Krasner, M., A class of hyperrings and hyperfields, Intern. J. Math. Math. Sci., 6(2), 307-312, (1983). DOI: https://doi.org/10.1155/S0161171283000265
Marty, F., Sur une generalization de la notion de groupe, 8iem congres Math. Scandinaves, Stockholm, 45-49, (1934).
Mirvakili, S., Anvariyeh, S.M., Davvaz, B., Transitivity of γ-relation on hyperfields, Bull. Math. Soc. Sci. Math. Roumanie, Tome 51(99), 233-243, (2008).
Mirvakili, S., Anvariyeh, S.M., Davvaz, B., On α-relation and transitivity conditions of α, Comm. Algebra 36, 1695–1703, (2008). DOI: https://doi.org/10.1080/00927870801937364
Mirvakili, S., Davvaz, B., Relationship between rings and hyperrings by using the notion of Fundamental relations, Comm. Algebra 41(1) (2013), 70-82. DOI: https://doi.org/10.1080/00927872.2011.622731
Norouzi, M., Cristea, I., Fundamental relation on m-idempotent hyperrings, Open Math. 15, 1558-1567, (2017). DOI: https://doi.org/10.1515/math-2017-0128
Vougiouklis, T., Representations of hypergroups, hypermatrices, Rivista di mat. Pure ed Appl. 2, 7-19, (1987).
Vougiouklis, T., The fundamental relation in hyperrings. The general hyperfield, Proc. Fourth Int. Congress on Algebraic Hyperstructures and Applications (AHA 1990), World Scientific, 203-211, (1991). DOI: https://doi.org/10.1142/9789814539555
Copyright (c) 2020 Boletim da Sociedade Paranaense de Matemática

Ce travail est disponible sous la licence Creative Commons Attribution 4.0 International .
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).



