(Jordan) derivation on amalgamated duplication of a ring along an ideal
Resumo
Let A be a ring and I be an ideal of A. The amalgamated duplication of A along I is the subring of A × A defined by $A\bowtie I := {(a, a + i) |a ∈ A, i ∈ I}$. In this paper, we characterize $A\bowtie I$ over which any (resp. minimal) prime ideal is invariant under any derivation provided that A is semiprime. When A is noncommutative prime, then $A\bowtie I$ is noncommutative semiprime (but not prime except if I = (0)). In this case, we prove that any map of $A\bowtie I$ which is both Jordan and Jordan triple derivation is a derivation.
Downloads
Referências
Beidar, K. I. and Mikhalev, A. V., Orthogonal completeness and minimal prime ideals, Trudy Sem. Petrovski 10, 227-234, (1984).
Beidar, K. I. and Mikhalev, A. V., Orthogonal completeness and algebraic systems, Uspekhi Mat. Nauk 40(6), 79-115, (1985). (in Russian) https://doi.org/10.1070/RM1985v040n06ABEH003702
Bergen, J., Automorphic-differential identities in rings, Proc. Amer. Math. Soc. 106, 297-305, (1989). https://doi.org/10.1090/S0002-9939-1989-0967482-3
Bresar, M., Jordan derivations on semiprime rings, Proc. Amer. Math. Soc. 104(4), 1003-1006, (1988). https://doi.org/10.1090/S0002-9939-1988-0929422-1
Bresar, M., Jordan mappings of semiprime rings, J. Algebra 127, 218-228, (1989). https://doi.org/10.1016/0021-8693(89)90285-8
Bresar, M. and Vukman, J., Jordan (θ, φ)-derivations, Glasnik Matematicki 26(46), 13-17, (1991).
Chuang, C. L. and Lee, T. K., Invariance of minimal prime ideals under derivations, Proc. Amer. Math. Soc. 113, 613-616, (1991). https://doi.org/10.1090/S0002-9939-1991-1072332-2
D'Anna, M., A construction of Gorenstein rings, J. Algebra 306(6), 507-519, (2006). https://doi.org/10.1016/j.jalgebra.2005.12.023
D'Anna, M. and Fontana, M., An amalgamated duplication of a ring along an ideal: the basic properties, J. Algebra Appl. 6(3), 443-459, (2007). https://doi.org/10.1142/S0219498807002326
D'Anna, M. and Fontana, M., The amalgamated duplication of a ring along a multiplicative-canonical ideal, Ark. Mat. 45(2), 241-252, (2007). https://doi.org/10.1007/s11512-006-0038-1
Goodearl, K. R. and Warfield Jr., R. B., Primitivity in differential operator rings, Math. Z.180, 503-523, (1982). https://doi.org/10.1007/BF01214722
Herstein, I. N., Jordan derivations of prime rings, Proc. Amer. Math. Soc. 8, 1104-1110, (1957). https://doi.org/10.1090/S0002-9939-1957-0095864-2
Letzter, G., Derivations and nil ideals, Rend. Circ. Mat. Palermo 37(2), 174-176, (1988). https://doi.org/10.1007/BF02844521
Copyright (c) 2021 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).