A generalization of Hartshorne's connectedness theorem

  • Dawood Hassanzadeh-lelekaami Arak University of Technology

Resumo

In this paper, we use local cohomology theory to present some results about connectedness property of prime spectrum of modules. In particular, we generalize the Hartshorne's connectedness theorem.

Downloads

Não há dados estatísticos.

Referências

A. Azizi, Strongly irreducible ideals, J. Aust. Math. Soc. 84 (2008), 145-154. https://doi.org/10.1017/S1446788708000062

M. Behboodi, A generalization of the classical Krull dimension for modules, J. Algebra 305 (2006), 1128-1148. https://doi.org/10.1016/j.jalgebra.2006.04.010

M. Behboodi and M. R. Haddadi, Classical Zariski topology of modules and spectral spaces I, Int. Electron. J. Algebra 4 (2008), 104-130.

M. P. Brodmann and R. Y. Sharp, Local cohomology: An algebraic introduction with geometric applications, Cambridge University Press, 1998. https://doi.org/10.1017/CBO9780511629204

W. Bruns and J. Herzog, Cohen-Macaulay rings, revised ed., Cambridge University Press, 1998. https://doi.org/10.1017/CBO9780511608681

J. Dauns, Prime modules, J. Reine Angew. Math. 298 (1978), 156-181. https://doi.org/10.1515/crll.1978.298.156

K. Divaani-Aazar, R. Naghipour, and M. Tousi, The Lichtenbaum-Hartshorne theorem for generalized local cohomology and connectedness, Comm. Algebra 30 (2002), no. 8, 3687-3702. https://doi.org/10.1081/AGB-120005813

K. Divaani-Aazar and P. Schenzel, Ideal topologies, local cohomology and connectedness, Math. Proc. Cambridge Philos. Soc. 131 (2001), 211-226. https://doi.org/10.1017/S0305004101005229

M. Eghbali and P. Schenzel, On an endomorphism ring of local cohomology, Comm. Algebra 40 (2012), 4295-4305. https://doi.org/10.1080/00927872.2011.588982

G. Faltings, Algebraisation of some formal vector bundles, Ann. of Math. 110 (1979), 501-514. https://doi.org/10.2307/1971235

E. H. Feller and E. W. Swokowski, Prime modules, Canad. J. Math. 17 (1965), 1041-1052. https://doi.org/10.4153/CJM-1965-099-5

R. Hartshorne, Complete intersection and connectedness, Amer. J. Math. 84 (1962), 497-508. https://doi.org/10.2307/2372986

D. Hassanzadeh-Lelekaami and H. Roshan-Shekalgourabi, Prime submodules and a sheaf on the prime spectra of modules, Comm. Algebra 42 (2014), no. 7, 3063-3077. https://doi.org/10.1080/00927872.2013.780063

Chin-Pi Lu, Prime submodules of modules, Comment. Math. Univ. St. Pauli 33 (1984), no. 1, 61-69.

Chin-Pi Lu, Spectra of modules, Comm. Algebra 23 (1995), no. 10, 3741-3752. https://doi.org/10.1080/00927879508825430

Chin-Pi Lu, The Zariski topology on the prime spectrum of a module, Houston J. Math. 25 (1999), no. 3, 417-432.

Chin-Pi Lu, Modules with Noetherian spectrum, Comm. Algebra 38 (2010), no. 3, 807-828. https://doi.org/10.1080/00927870802578050

R. L. McCasland, M. E. Moore, and P. F. Smith, On the spectrum of a module over a commutative ring, Comm. Algebra 25 (1997), no. 1, 79-103. https://doi.org/10.1080/00927879708825840

P. Schenzel, On formal local cohomology and connectedness, J. Algebra 315 (2007), 894-923. https://doi.org/10.1016/j.jalgebra.2007.06.015

M. Tousi and S. Yassemi, The Lichtenbaum-Hartshorne theorem for modules which are finite over a ring homomorphism, J. Pure Appl. Algebra 212 (2008), 1222-1228. https://doi.org/10.1016/j.jpaa.2007.09.003

Publicado
2021-12-18
Seção
Artigos