A generalization of Hartshorne's connectedness theorem
Abstract
In this paper, we use local cohomology theory to present some results about connectedness property of prime spectrum of modules. In particular, we generalize the Hartshorne's connectedness theorem.
Downloads
References
A. Azizi, Strongly irreducible ideals, J. Aust. Math. Soc. 84 (2008), 145-154. https://doi.org/10.1017/S1446788708000062
M. Behboodi, A generalization of the classical Krull dimension for modules, J. Algebra 305 (2006), 1128-1148. https://doi.org/10.1016/j.jalgebra.2006.04.010
M. Behboodi and M. R. Haddadi, Classical Zariski topology of modules and spectral spaces I, Int. Electron. J. Algebra 4 (2008), 104-130.
M. P. Brodmann and R. Y. Sharp, Local cohomology: An algebraic introduction with geometric applications, Cambridge University Press, 1998. https://doi.org/10.1017/CBO9780511629204
W. Bruns and J. Herzog, Cohen-Macaulay rings, revised ed., Cambridge University Press, 1998. https://doi.org/10.1017/CBO9780511608681
J. Dauns, Prime modules, J. Reine Angew. Math. 298 (1978), 156-181. https://doi.org/10.1515/crll.1978.298.156
K. Divaani-Aazar, R. Naghipour, and M. Tousi, The Lichtenbaum-Hartshorne theorem for generalized local cohomology and connectedness, Comm. Algebra 30 (2002), no. 8, 3687-3702. https://doi.org/10.1081/AGB-120005813
K. Divaani-Aazar and P. Schenzel, Ideal topologies, local cohomology and connectedness, Math. Proc. Cambridge Philos. Soc. 131 (2001), 211-226. https://doi.org/10.1017/S0305004101005229
M. Eghbali and P. Schenzel, On an endomorphism ring of local cohomology, Comm. Algebra 40 (2012), 4295-4305. https://doi.org/10.1080/00927872.2011.588982
G. Faltings, Algebraisation of some formal vector bundles, Ann. of Math. 110 (1979), 501-514. https://doi.org/10.2307/1971235
E. H. Feller and E. W. Swokowski, Prime modules, Canad. J. Math. 17 (1965), 1041-1052. https://doi.org/10.4153/CJM-1965-099-5
R. Hartshorne, Complete intersection and connectedness, Amer. J. Math. 84 (1962), 497-508. https://doi.org/10.2307/2372986
D. Hassanzadeh-Lelekaami and H. Roshan-Shekalgourabi, Prime submodules and a sheaf on the prime spectra of modules, Comm. Algebra 42 (2014), no. 7, 3063-3077. https://doi.org/10.1080/00927872.2013.780063
Chin-Pi Lu, Prime submodules of modules, Comment. Math. Univ. St. Pauli 33 (1984), no. 1, 61-69.
Chin-Pi Lu, Spectra of modules, Comm. Algebra 23 (1995), no. 10, 3741-3752. https://doi.org/10.1080/00927879508825430
Chin-Pi Lu, The Zariski topology on the prime spectrum of a module, Houston J. Math. 25 (1999), no. 3, 417-432.
Chin-Pi Lu, Modules with Noetherian spectrum, Comm. Algebra 38 (2010), no. 3, 807-828. https://doi.org/10.1080/00927870802578050
R. L. McCasland, M. E. Moore, and P. F. Smith, On the spectrum of a module over a commutative ring, Comm. Algebra 25 (1997), no. 1, 79-103. https://doi.org/10.1080/00927879708825840
P. Schenzel, On formal local cohomology and connectedness, J. Algebra 315 (2007), 894-923. https://doi.org/10.1016/j.jalgebra.2007.06.015
M. Tousi and S. Yassemi, The Lichtenbaum-Hartshorne theorem for modules which are finite over a ring homomorphism, J. Pure Appl. Algebra 212 (2008), 1222-1228. https://doi.org/10.1016/j.jpaa.2007.09.003
Copyright (c) 2021 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).