On eta-Einstein N(k)-contact metric manifolds
Abstract
The aim of this paper is to characterize eta-Einstein N(k)-contact metric manifolds admits eta-Ricci soliton. Several consequences of this result are discussed. Beside these, we also study eta-Einstein N(k)-contact metric manifolds satisfying certain curvature conditions. Among others it is shown that such a manifold is either locally isometric to the Riemannian product En+1(0) Sn(4) or a Sasakian manifold. Finally, we construct an example to verify some results.
Downloads
References
Blair, D. E.,Contact manifolds in Riemannian geometry, Lecture Notes in Math., 509, Springer-Verlag, (1976). https://doi.org/10.1007/BFb0079307
Blair, D. E.,Two remarks on contact metric structure, Tohoku Math. J., 29, 319-324, (1977). https://doi.org/10.2748/tmj/1178240602
Blair, D. E., Koufogiorgos, T., Papantoniou, B. J.,Contact metric manifolds satisfying a nullity condition, Israel J. ofMath., 19, 189-214, (1995). https://doi.org/10.1007/BF02761646
Blaga, A. M.,η-Ricci solitons on para-Kenmotsu, manifolds, arXiv:1402.0223v1, [math DG], (2014).
Blair, D. E., Kim, J. S., Tripathi, M. M.,On the concircular curvature tensor of a contact metric manifold, J. KoreanMath. Soc. 42, 883-892, (2005). https://doi.org/10.4134/JKMS.2005.42.5.883
Boeckx, E.A full classification of contact metric(κ, μ)-spaces, Illinois J. Math., 44(1), 212-219, (2000). https://doi.org/10.1215/ijm/1255984960
Cecil, T. E., Ryan, P. J.,Focal sets and real hypersurfaces in complex projective space, Trans. Amer. Math. Soc., 269,481-499, (1982). https://doi.org/10.2307/1998460
Cho, J. T., Kimura, M.,Ricci solitons and Real hypersurfaces in a complex space form, Tohoku math. J., 61, 205-212,(2009). https://doi.org/10.2748/tmj/1245849443
Hamilton, R. S.,The Ricci flow on surfaces, Mathematical and general relativity(Santa Cruz,CA,1986), AmericanMath. Soc., Contemp. Math., 71, 237-262, (1988). https://doi.org/10.1090/conm/071/954419
Ki, U-H.,Real hypersurfaces with parallel Ricci tensor of a complex space form, Tsukaba J. Math., 13, 73-81, (1989). https://doi.org/10.21099/tkbjm/1496161007
Hui, S. K., Yadav, S. K., Chaubey, S. K.η-Ricci soliton on3-dimensionalf-Kenmotsu manifolds, Appl. Appl. Math.,13(2), 933-951, (2018).
Hui, S. K., Yadav, S. K., Patra, A.Almost conformal Ricci soliton onf-Kenmotsu manifolds, Khayam J. Math., 5(1),89-104, (2019).
Montiel, S.,Real hypersurfaces of complex hyperbolic space, J.Math. Soc. Japan, 35, 515-535, (1985). https://doi.org/10.2969/jmsj/03730515
Mikes, J., Rachånek, L.,Torse forming vector fields inT-semisymmetric Riemannian spaces. In: Steps in Diff. Geom.,Proc. of the Colloquium on Diff. Geom., Univ. Debrecen, Debrecen, Hungary, 219-229, (2000).
Mikes, J. et al.,Differential Geometry of Special Mappings, Palacky Univ. Press, Olomouc, (2015).
Nagaraja, H. G., Prematha, C. R.,Ricci solitons in Kenmotsu manifolds, Journal of Mathematical analysis, 3 (2),18-24, (2012).
Prakasha, D. G., Hadimani, B. S.,η-Ricci solitons on para-Sasakian manifolds, J. Geom.,DOI 10.1007/s00022-016-0345-z.
Pokhariyal, G. P., Mishra, R. S.,The curvature tensor and their relativistic significance, Yokohama Math. J., 18,105-108, (1970).
Pokhariyal, G. P., Yadav, S. K., Chaubey, S. K.Ricci solitons on trans-Sasakian manifolds, Diff. Geom. and Dyn. Sys.20, 138-158, (2018).
Sharma, R.,Certain results onK-contact and(κ, μ)-contact manifolds, J.Geom., 89, 138-147, (2008). https://doi.org/10.1007/s00022-008-2004-5
Shaikh, A. A., Baishya, K. K.,On(k, μ)-contact metric manifolds, J. Diff. Geom. and Dyn. Sys., 11, 253-261, (1906).
Tanno, S.,Ricci curvatures of contact Riemannian manifolds, Tohoku Math. J., 40, 441-448, (1988). https://doi.org/10.2748/tmj/1178227985
Tripathi, M. M.,Ricci solitons in contact metric manifolds, arXiv:0801, 4222v1, [math DG], (2008).
Yadav, S. K.,Chaubey, S. K., Suthar, D. L.Some results onη-Ricci solitons on(LCS)n-manifolds, Surveys in Mathe-matics and its Applications, 13, 237-250, (2018).
Yadav, S. K., Chaubey, S. K., Suthar, D. L.Some geometric properties ofη-Ricci solitons and gradient Ricci solitonson(LCS)n-manifolds, CUBO A Mathematical Journal, 2(19), 33-48 (2017). https://doi.org/10.4067/S0719-06462017000200033
Yadav, S. K.,Ricci solitons on Para-Kaehler manifolds, Extracta Mathematikae, 34(2), 269-284, (2019).
Yadav, S. K., Ozturk, H.,On(ǫ)-Almost paracontact metric manifolds with conformalη-Ricci soliton, DifferentialGeometry-Dynamical Systems, 19, 1-10,(2019).
Yadav, S. K., Kushwaha, A., Narain, D.,Certain results forη-Ricci soliton and Yamabe soliton on quasi-Sasakian3-manifolds, Cubo A mathematical Journal, 21(2), 77-98, (2019). https://doi.org/10.4067/S0719-06462019000200077
Yadav, S. K., Chaubey, S. K., Suthar, D.L.,Certain geometric properties ofη-Ricci soliton onη-Einstein Para-Kenmotsumanifolds, Palestine Journal of Mathematics, 9(1), 237-244, (2020).
Copyright (c) 2022 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).