On eta-Einstein N(k)-contact metric manifolds

Resumo

The aim of this paper is to characterize eta-Einstein N(k)-contact metric manifolds admits eta-Ricci soliton. Several consequences of this result are discussed. Beside these, we also study eta-Einstein N(k)-contact metric manifolds satisfying certain curvature conditions. Among others it is shown that such a manifold is either locally isometric to the Riemannian product En+1(0) Sn(4) or a Sasakian manifold. Finally, we construct an example to verify some results.

Downloads

Não há dados estatísticos.

Biografia do Autor

Sunil Kumar Yadav, Poornima Collage of Engineering

MATHEMATICS,SECOND RANK IN RAJASTHAN

Referências

Blair, D. E.,Contact manifolds in Riemannian geometry, Lecture Notes in Math., 509, Springer-Verlag, (1976). https://doi.org/10.1007/BFb0079307

Blair, D. E.,Two remarks on contact metric structure, Tohoku Math. J., 29, 319-324, (1977). https://doi.org/10.2748/tmj/1178240602

Blair, D. E., Koufogiorgos, T., Papantoniou, B. J.,Contact metric manifolds satisfying a nullity condition, Israel J. ofMath., 19, 189-214, (1995). https://doi.org/10.1007/BF02761646

Blaga, A. M.,η-Ricci solitons on para-Kenmotsu, manifolds, arXiv:1402.0223v1, [math DG], (2014).

Blair, D. E., Kim, J. S., Tripathi, M. M.,On the concircular curvature tensor of a contact metric manifold, J. KoreanMath. Soc. 42, 883-892, (2005). https://doi.org/10.4134/JKMS.2005.42.5.883

Boeckx, E.A full classification of contact metric(κ, μ)-spaces, Illinois J. Math., 44(1), 212-219, (2000). https://doi.org/10.1215/ijm/1255984960

Cecil, T. E., Ryan, P. J.,Focal sets and real hypersurfaces in complex projective space, Trans. Amer. Math. Soc., 269,481-499, (1982). https://doi.org/10.2307/1998460

Cho, J. T., Kimura, M.,Ricci solitons and Real hypersurfaces in a complex space form, Tohoku math. J., 61, 205-212,(2009). https://doi.org/10.2748/tmj/1245849443

Hamilton, R. S.,The Ricci flow on surfaces, Mathematical and general relativity(Santa Cruz,CA,1986), AmericanMath. Soc., Contemp. Math., 71, 237-262, (1988). https://doi.org/10.1090/conm/071/954419

Ki, U-H.,Real hypersurfaces with parallel Ricci tensor of a complex space form, Tsukaba J. Math., 13, 73-81, (1989). https://doi.org/10.21099/tkbjm/1496161007

Hui, S. K., Yadav, S. K., Chaubey, S. K.η-Ricci soliton on3-dimensionalf-Kenmotsu manifolds, Appl. Appl. Math.,13(2), 933-951, (2018).

Hui, S. K., Yadav, S. K., Patra, A.Almost conformal Ricci soliton onf-Kenmotsu manifolds, Khayam J. Math., 5(1),89-104, (2019).

Montiel, S.,Real hypersurfaces of complex hyperbolic space, J.Math. Soc. Japan, 35, 515-535, (1985). https://doi.org/10.2969/jmsj/03730515

Mikes, J., Rachånek, L.,Torse forming vector fields inT-semisymmetric Riemannian spaces. In: Steps in Diff. Geom.,Proc. of the Colloquium on Diff. Geom., Univ. Debrecen, Debrecen, Hungary, 219-229, (2000).

Mikes, J. et al.,Differential Geometry of Special Mappings, Palacky Univ. Press, Olomouc, (2015).

Nagaraja, H. G., Prematha, C. R.,Ricci solitons in Kenmotsu manifolds, Journal of Mathematical analysis, 3 (2),18-24, (2012).

Prakasha, D. G., Hadimani, B. S.,η-Ricci solitons on para-Sasakian manifolds, J. Geom.,DOI 10.1007/s00022-016-0345-z.

Pokhariyal, G. P., Mishra, R. S.,The curvature tensor and their relativistic significance, Yokohama Math. J., 18,105-108, (1970).

Pokhariyal, G. P., Yadav, S. K., Chaubey, S. K.Ricci solitons on trans-Sasakian manifolds, Diff. Geom. and Dyn. Sys.20, 138-158, (2018).

Sharma, R.,Certain results onK-contact and(κ, μ)-contact manifolds, J.Geom., 89, 138-147, (2008). https://doi.org/10.1007/s00022-008-2004-5

Shaikh, A. A., Baishya, K. K.,On(k, μ)-contact metric manifolds, J. Diff. Geom. and Dyn. Sys., 11, 253-261, (1906).

Tanno, S.,Ricci curvatures of contact Riemannian manifolds, Tohoku Math. J., 40, 441-448, (1988). https://doi.org/10.2748/tmj/1178227985

Tripathi, M. M.,Ricci solitons in contact metric manifolds, arXiv:0801, 4222v1, [math DG], (2008).

Yadav, S. K.,Chaubey, S. K., Suthar, D. L.Some results onη-Ricci solitons on(LCS)n-manifolds, Surveys in Mathe-matics and its Applications, 13, 237-250, (2018).

Yadav, S. K., Chaubey, S. K., Suthar, D. L.Some geometric properties ofη-Ricci solitons and gradient Ricci solitonson(LCS)n-manifolds, CUBO A Mathematical Journal, 2(19), 33-48 (2017). https://doi.org/10.4067/S0719-06462017000200033

Yadav, S. K.,Ricci solitons on Para-Kaehler manifolds, Extracta Mathematikae, 34(2), 269-284, (2019).

Yadav, S. K., Ozturk, H.,On(ǫ)-Almost paracontact metric manifolds with conformalη-Ricci soliton, DifferentialGeometry-Dynamical Systems, 19, 1-10,(2019).

Yadav, S. K., Kushwaha, A., Narain, D.,Certain results forη-Ricci soliton and Yamabe soliton on quasi-Sasakian3-manifolds, Cubo A mathematical Journal, 21(2), 77-98, (2019). https://doi.org/10.4067/S0719-06462019000200077

Yadav, S. K., Chaubey, S. K., Suthar, D.L.,Certain geometric properties ofη-Ricci soliton onη-Einstein Para-Kenmotsumanifolds, Palestine Journal of Mathematics, 9(1), 237-244, (2020).

Publicado
2022-12-24
Seção
Artigos