On the divergence of two subseries $\ldots$] {on the divergence of two subseries of $\sum\frac{1}{p}$, and theorems of de La Vall\'{e}e Poussin and Landau-Walfis

Résumé

Let $K=Q(\sqrt{d})$ be a quadratic field with discriminant $d$. It is shown that $\sum\limits_{(\frac{d}{p})=+1,_{p~ prime}}\frac{1}{p}$ and $\sum\limits_{(\frac{d}{q})=-1,_{q~ prime}}\frac{1}{q}$ are both divergent. Two different approaches are given to show the divergence: one using the Dedekind Zeta function and the other by Tauberian methods. It is shown that these two divergences are equivalent. It is shown that the divergence is equivalent to $L_{d}(1)\neq 0$(de la Vall\'{e}e Poussin's Theorem).We prove that the series $\sum\limits_{(\frac{d}{p})=+1,_{p~ prime}}\frac{1}{p^{s}}$ and $\sum\limits_{(\frac{d}{q})=-1,_{q~ prime}}\frac{1}{q^{s}}$ have singularities on all the imaginary axis(analogue of Landau-Walfisz theorem)

Téléchargements

Les données sur le téléchargement ne sont pas encore disponible.

Biographie de l'auteur

G. Sudhaamsh Mohan Reddy, ICFAI Foundation for Higher Education

Assistant Professor

Faculty of Science and Technology

Références

J. Andrade, Hilbert-Polya Conjecture,Zeta Functions and Bosnic Quantum Field Theorees, International Journal of Modern Physics A, 28, (2013). DOI: https://doi.org/10.1142/S0217751X13500723

Tom Apostol, Introduction to Analytic Number Theory, Springer, (1976). DOI: https://doi.org/10.1007/978-1-4757-5579-4

L. J. Goldstein, Analytic Number Theory, Prentice Hall, (1971).

G. Hardy, ”Ramanujan: 12 Lectures suggested by his life and work”, Chelsea, (1959).

E. Hlawka, J.Schoipengeir, R.Taschner Geometric and Analytic Number Theory, Springer, (1992). DOI: https://doi.org/10.1007/978-3-642-75306-0

K. Ireland and M Rosen, A Classical Introduction to Modren Number Theory, Springer, (1982). DOI: https://doi.org/10.1007/978-1-4757-1779-2

N. Kurokawa, On certain Euler products, Acta Mathematica, Vol XLVIII, 49-52, (1987). DOI: https://doi.org/10.4064/aa-48-1-49-52

J. Serre, Course in Arithmetic, Springer, (1973). DOI: https://doi.org/10.1007/978-1-4684-9884-4

S. Srinivas Rau and B.Uma, Squarefree ideals in Quadratic fields and the Dedekind Zeta function, Vikram Math Journal Vol 13, 35-44,(1993).

TIFR Pamphlet 4, Algebraic Number Theory, (1966).

G. Sudhaamsh Mohan Reddy, SS Rau„ B Uma A remark on Hardy-Ramanujan’s approximation of divisor functions, International Journal of Pure and Applied Mathematics, 118 (4), 997-999, (2018).

G. Sudhaamsh Mohan Reddy, SS Rau, B Uma, Some Dirichlet Series and Means of Their Coefficients,Southeast Asian Bulletin of Mathematics 40 (4), 585-591, (2016).

G. Sudhaamsh Mohan Reddy, SS Rau, B Uma, Some arithmetic functions and their means,International Journal of Pure and Applied Mathematics 119 (2), 369-374, (2018).

G. Sudhaamsh Mohan Reddy, SS Rau, B Uma, A Bertrand Postulate for a subclass of primes, Boletim da Sociedade Paranaense de Matematica 31 (2), 109-111, (2013). DOI: https://doi.org/10.5269/bspm.v31i2.15138

G. Sudhaamsh Mohan Reddy, SS Rau, B Uma, Converegence of a series leading to an analogue of Ramanujan’s assertion on squarefree integers, Boletim da Sociedade Paranaense de Matem´atica 38 (2), 83-87, (2020). DOI: https://doi.org/10.5269/bspm.v38i2.34878

Titchmarsh E., The theory of the Zeta Function, Oxford Univ Press, (1951).

Publiée
2022-12-24
Rubrique
Articles